Cargando…
Predict Alzheimer’s disease using hippocampus MRI data: a lightweight 3D deep convolutional network model with visual and global shape representations
BACKGROUND: Alzheimer’s disease (AD) is a progressive and irreversible brain disorder. Hippocampus is one of the involved regions and its atrophy is a widely used biomarker for AD diagnosis. We have recently developed DenseCNN, a lightweight 3D deep convolutional network model, for AD classification...
Autores principales: | Katabathula, Sreevani, Wang, Qinyong, Xu, Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147046/ https://www.ncbi.nlm.nih.gov/pubmed/34030743 http://dx.doi.org/10.1186/s13195-021-00837-0 |
Ejemplares similares
-
Orthogonal Representations of Object Shape and Category in Deep Convolutional Neural Networks and Human Visual Cortex
por: Zeman, Astrid A., et al.
Publicado: (2020) -
Multipath Lightweight Deep Network Using Randomly Selected Dilated Convolution
por: Park, Sangun, et al.
Publicado: (2021) -
Malaria Diagnosis Using a Lightweight Deep Convolutional Neural Network
por: Magotra, Varun, et al.
Publicado: (2022) -
Deep convolutional networks do not classify based on global object shape
por: Baker, Nicholas, et al.
Publicado: (2018) -
A Lightweight Semantic Segmentation Algorithm Based on Deep Convolutional Neural Networks
por: Yang, Chengzhi, et al.
Publicado: (2022)