Cargando…
Predicting in-Hospital Mortality of Patients with COVID-19 Using Machine Learning Techniques
The present work aims to identify the predictors of COVID-19 in-hospital mortality testing a set of Machine Learning Techniques (MLTs), comparing their ability to predict the outcome of interest. The model with the best performance will be used to identify in-hospital mortality predictors and to bui...
Autores principales: | Tezza, Fabiana, Lorenzoni, Giulia, Azzolina, Danila, Barbar, Sofia, Leone, Lucia Anna Carmela, Gregori, Dario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147079/ https://www.ncbi.nlm.nih.gov/pubmed/33923332 http://dx.doi.org/10.3390/jpm11050343 |
Ejemplares similares
-
A Machine Learning Approach for Investigating Delirium as a Multifactorial Syndrome
por: Ocagli, Honoria, et al.
Publicado: (2021) -
Profiling Patients by Intensity of Nursing Care: An Operative Approach Using Machine Learning
por: Ocagli, Honoria, et al.
Publicado: (2020) -
Machine Learning Algorithms for Prediction of Survival by Stress Echocardiography in Chronic Coronary Syndromes
por: Cortigiani, Lauro, et al.
Publicado: (2022) -
Predicting Hemodynamic Failure Development in PICU Using Machine Learning Techniques
por: Comoretto, Rosanna I., et al.
Publicado: (2021) -
The Role of Genetic Factors in Characterizing Extra-Intestinal Manifestations in Crohn’s Disease Patients: Are Bayesian Machine Learning Methods Improving Outcome Predictions?
por: Bottigliengo, Daniele, et al.
Publicado: (2019)