Cargando…
Transcriptomic and metabolomic characterization of post-hatch metabolic reprogramming during hepatic development in the chicken
BACKGROUND: Artificial selection of modern meat-producing chickens (broilers) for production characteristics has led to dramatic changes in phenotype, yet the impact of this selection on metabolic and molecular mechanisms is poorly understood. The first 3 weeks post-hatch represent a critical period...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147372/ https://www.ncbi.nlm.nih.gov/pubmed/34030631 http://dx.doi.org/10.1186/s12864-021-07724-w |
_version_ | 1783697615712419840 |
---|---|
author | Van Every, Heidi A. Schmidt, Carl J. |
author_facet | Van Every, Heidi A. Schmidt, Carl J. |
author_sort | Van Every, Heidi A. |
collection | PubMed |
description | BACKGROUND: Artificial selection of modern meat-producing chickens (broilers) for production characteristics has led to dramatic changes in phenotype, yet the impact of this selection on metabolic and molecular mechanisms is poorly understood. The first 3 weeks post-hatch represent a critical period of adjustment, during which the yolk lipid is depleted and the bird transitions to reliance on a carbohydrate-rich diet. As the liver is the major organ involved in macronutrient metabolism and nutrient allocatytion, a combined transcriptomics and metabolomics approach has been used to evaluate hepatic metabolic reprogramming between Day 4 (D4) and Day 20 (D20) post-hatch. RESULTS: Many transcripts and metabolites involved in metabolic pathways differed in their abundance between D4 and D20, representing different stages of metabolism that are enhanced or diminished. For example, at D20 the first stage of glycolysis that utilizes ATP to store or release glucose is enhanced, while at D4, the ATP-generating phase is enhanced to provide energy for rapid cellular proliferation at this time point. This work has also identified several metabolites, including citrate, phosphoenolpyruvate, and glycerol, that appear to play pivotal roles in this reprogramming. CONCLUSIONS: At Day 4, metabolic flexibility allows for efficiency to meet the demands of rapid liver growth under oxygen-limiting conditions. At Day 20, the liver’s metabolism has shifted to process a carbohydrate-rich diet that supports the rapid overall growth of the modern broiler. Characterizing these metabolic changes associated with normal post-hatch hepatic development has generated testable hypotheses about the involvement of specific genes and metabolites, clarified the importance of hypoxia to rapid organ growth, and contributed to our understanding of the molecular changes affected by decades of artificial selection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-021-07724-w. |
format | Online Article Text |
id | pubmed-8147372 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-81473722021-05-26 Transcriptomic and metabolomic characterization of post-hatch metabolic reprogramming during hepatic development in the chicken Van Every, Heidi A. Schmidt, Carl J. BMC Genomics Research BACKGROUND: Artificial selection of modern meat-producing chickens (broilers) for production characteristics has led to dramatic changes in phenotype, yet the impact of this selection on metabolic and molecular mechanisms is poorly understood. The first 3 weeks post-hatch represent a critical period of adjustment, during which the yolk lipid is depleted and the bird transitions to reliance on a carbohydrate-rich diet. As the liver is the major organ involved in macronutrient metabolism and nutrient allocatytion, a combined transcriptomics and metabolomics approach has been used to evaluate hepatic metabolic reprogramming between Day 4 (D4) and Day 20 (D20) post-hatch. RESULTS: Many transcripts and metabolites involved in metabolic pathways differed in their abundance between D4 and D20, representing different stages of metabolism that are enhanced or diminished. For example, at D20 the first stage of glycolysis that utilizes ATP to store or release glucose is enhanced, while at D4, the ATP-generating phase is enhanced to provide energy for rapid cellular proliferation at this time point. This work has also identified several metabolites, including citrate, phosphoenolpyruvate, and glycerol, that appear to play pivotal roles in this reprogramming. CONCLUSIONS: At Day 4, metabolic flexibility allows for efficiency to meet the demands of rapid liver growth under oxygen-limiting conditions. At Day 20, the liver’s metabolism has shifted to process a carbohydrate-rich diet that supports the rapid overall growth of the modern broiler. Characterizing these metabolic changes associated with normal post-hatch hepatic development has generated testable hypotheses about the involvement of specific genes and metabolites, clarified the importance of hypoxia to rapid organ growth, and contributed to our understanding of the molecular changes affected by decades of artificial selection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-021-07724-w. BioMed Central 2021-05-24 /pmc/articles/PMC8147372/ /pubmed/34030631 http://dx.doi.org/10.1186/s12864-021-07724-w Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Van Every, Heidi A. Schmidt, Carl J. Transcriptomic and metabolomic characterization of post-hatch metabolic reprogramming during hepatic development in the chicken |
title | Transcriptomic and metabolomic characterization of post-hatch metabolic reprogramming during hepatic development in the chicken |
title_full | Transcriptomic and metabolomic characterization of post-hatch metabolic reprogramming during hepatic development in the chicken |
title_fullStr | Transcriptomic and metabolomic characterization of post-hatch metabolic reprogramming during hepatic development in the chicken |
title_full_unstemmed | Transcriptomic and metabolomic characterization of post-hatch metabolic reprogramming during hepatic development in the chicken |
title_short | Transcriptomic and metabolomic characterization of post-hatch metabolic reprogramming during hepatic development in the chicken |
title_sort | transcriptomic and metabolomic characterization of post-hatch metabolic reprogramming during hepatic development in the chicken |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147372/ https://www.ncbi.nlm.nih.gov/pubmed/34030631 http://dx.doi.org/10.1186/s12864-021-07724-w |
work_keys_str_mv | AT vaneveryheidia transcriptomicandmetabolomiccharacterizationofposthatchmetabolicreprogrammingduringhepaticdevelopmentinthechicken AT schmidtcarlj transcriptomicandmetabolomiccharacterizationofposthatchmetabolicreprogrammingduringhepaticdevelopmentinthechicken |