Cargando…

Scutellaria barbata D. Don Inhibits the Main Proteases (M(pro) and TMPRSS2) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection

In late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic emerged to severely impact the global population, creating an unprecedented need for effective treatments. This study aims to investigate the potential of Scutellaria barbata D. Don (SB) as a treatment for SARS-C...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Sheng-Teng, Chen, Yeh, Chang, Wei-Chao, Chen, Hsiao-Fan, Lai, Hsiang-Chun, Lin, Yu-Chun, Wang, Wei-Jan, Wang, Yu-Chuan, Yang, Chia-Shin, Wang, Shao-Chun, Hung, Mien-Chie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147405/
https://www.ncbi.nlm.nih.gov/pubmed/34063247
http://dx.doi.org/10.3390/v13050826
Descripción
Sumario:In late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic emerged to severely impact the global population, creating an unprecedented need for effective treatments. This study aims to investigate the potential of Scutellaria barbata D. Don (SB) as a treatment for SARS-CoV-2 infection through the inhibition of the proteases playing important functions in the infection by SARS-CoV-2. FRET assay was applied to investigate the inhibitory effects of SB on the two proteases involved in SARS-CoV-2 infection, M(pro) and TMPRSS2. Additionally, to measure the potential effectiveness of SB treatment on infection inhibition, cellular models based on the Calu3 and VeroE6 cells and their TMPRSS2- expressing derivatives were assessed by viral pseudoparticles (Vpp) infection assays. The experimental approaches were conjugated with LC/MS analyses of the aqueous extracts of SB to identify the major constituent compounds, followed by a literature review to determine the potential active components of the inhibitory effects on protease activities. Our results showed that SB extracts inhibited the enzyme activities of M(pro) and TMPRSS2. Furthermore, SB extracts effectively inhibited SARS-CoV-2 Vpp infection through a TMPRSS2-dependent mechanism. The aqueous extract analysis identified six major constituent compounds present in SB. Some of them have been known associated with inhibitory activities of TMPRSS2 or M(pro). Thus, SB may effectively prevent SARS-CoV-2 infection and replication through inhibiting M(pro) and TMPRSS2 protease activities.