Cargando…
Scutellaria barbata D. Don Inhibits the Main Proteases (M(pro) and TMPRSS2) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection
In late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic emerged to severely impact the global population, creating an unprecedented need for effective treatments. This study aims to investigate the potential of Scutellaria barbata D. Don (SB) as a treatment for SARS-C...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147405/ https://www.ncbi.nlm.nih.gov/pubmed/34063247 http://dx.doi.org/10.3390/v13050826 |
_version_ | 1783697623225466880 |
---|---|
author | Huang, Sheng-Teng Chen, Yeh Chang, Wei-Chao Chen, Hsiao-Fan Lai, Hsiang-Chun Lin, Yu-Chun Wang, Wei-Jan Wang, Yu-Chuan Yang, Chia-Shin Wang, Shao-Chun Hung, Mien-Chie |
author_facet | Huang, Sheng-Teng Chen, Yeh Chang, Wei-Chao Chen, Hsiao-Fan Lai, Hsiang-Chun Lin, Yu-Chun Wang, Wei-Jan Wang, Yu-Chuan Yang, Chia-Shin Wang, Shao-Chun Hung, Mien-Chie |
author_sort | Huang, Sheng-Teng |
collection | PubMed |
description | In late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic emerged to severely impact the global population, creating an unprecedented need for effective treatments. This study aims to investigate the potential of Scutellaria barbata D. Don (SB) as a treatment for SARS-CoV-2 infection through the inhibition of the proteases playing important functions in the infection by SARS-CoV-2. FRET assay was applied to investigate the inhibitory effects of SB on the two proteases involved in SARS-CoV-2 infection, M(pro) and TMPRSS2. Additionally, to measure the potential effectiveness of SB treatment on infection inhibition, cellular models based on the Calu3 and VeroE6 cells and their TMPRSS2- expressing derivatives were assessed by viral pseudoparticles (Vpp) infection assays. The experimental approaches were conjugated with LC/MS analyses of the aqueous extracts of SB to identify the major constituent compounds, followed by a literature review to determine the potential active components of the inhibitory effects on protease activities. Our results showed that SB extracts inhibited the enzyme activities of M(pro) and TMPRSS2. Furthermore, SB extracts effectively inhibited SARS-CoV-2 Vpp infection through a TMPRSS2-dependent mechanism. The aqueous extract analysis identified six major constituent compounds present in SB. Some of them have been known associated with inhibitory activities of TMPRSS2 or M(pro). Thus, SB may effectively prevent SARS-CoV-2 infection and replication through inhibiting M(pro) and TMPRSS2 protease activities. |
format | Online Article Text |
id | pubmed-8147405 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81474052021-05-26 Scutellaria barbata D. Don Inhibits the Main Proteases (M(pro) and TMPRSS2) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection Huang, Sheng-Teng Chen, Yeh Chang, Wei-Chao Chen, Hsiao-Fan Lai, Hsiang-Chun Lin, Yu-Chun Wang, Wei-Jan Wang, Yu-Chuan Yang, Chia-Shin Wang, Shao-Chun Hung, Mien-Chie Viruses Article In late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic emerged to severely impact the global population, creating an unprecedented need for effective treatments. This study aims to investigate the potential of Scutellaria barbata D. Don (SB) as a treatment for SARS-CoV-2 infection through the inhibition of the proteases playing important functions in the infection by SARS-CoV-2. FRET assay was applied to investigate the inhibitory effects of SB on the two proteases involved in SARS-CoV-2 infection, M(pro) and TMPRSS2. Additionally, to measure the potential effectiveness of SB treatment on infection inhibition, cellular models based on the Calu3 and VeroE6 cells and their TMPRSS2- expressing derivatives were assessed by viral pseudoparticles (Vpp) infection assays. The experimental approaches were conjugated with LC/MS analyses of the aqueous extracts of SB to identify the major constituent compounds, followed by a literature review to determine the potential active components of the inhibitory effects on protease activities. Our results showed that SB extracts inhibited the enzyme activities of M(pro) and TMPRSS2. Furthermore, SB extracts effectively inhibited SARS-CoV-2 Vpp infection through a TMPRSS2-dependent mechanism. The aqueous extract analysis identified six major constituent compounds present in SB. Some of them have been known associated with inhibitory activities of TMPRSS2 or M(pro). Thus, SB may effectively prevent SARS-CoV-2 infection and replication through inhibiting M(pro) and TMPRSS2 protease activities. MDPI 2021-05-02 /pmc/articles/PMC8147405/ /pubmed/34063247 http://dx.doi.org/10.3390/v13050826 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Huang, Sheng-Teng Chen, Yeh Chang, Wei-Chao Chen, Hsiao-Fan Lai, Hsiang-Chun Lin, Yu-Chun Wang, Wei-Jan Wang, Yu-Chuan Yang, Chia-Shin Wang, Shao-Chun Hung, Mien-Chie Scutellaria barbata D. Don Inhibits the Main Proteases (M(pro) and TMPRSS2) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection |
title | Scutellaria barbata D. Don Inhibits the Main Proteases (M(pro) and TMPRSS2) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection |
title_full | Scutellaria barbata D. Don Inhibits the Main Proteases (M(pro) and TMPRSS2) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection |
title_fullStr | Scutellaria barbata D. Don Inhibits the Main Proteases (M(pro) and TMPRSS2) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection |
title_full_unstemmed | Scutellaria barbata D. Don Inhibits the Main Proteases (M(pro) and TMPRSS2) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection |
title_short | Scutellaria barbata D. Don Inhibits the Main Proteases (M(pro) and TMPRSS2) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection |
title_sort | scutellaria barbata d. don inhibits the main proteases (m(pro) and tmprss2) of severe acute respiratory syndrome coronavirus 2 (sars-cov-2) infection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147405/ https://www.ncbi.nlm.nih.gov/pubmed/34063247 http://dx.doi.org/10.3390/v13050826 |
work_keys_str_mv | AT huangshengteng scutellariabarbataddoninhibitsthemainproteasesmproandtmprss2ofsevereacuterespiratorysyndromecoronavirus2sarscov2infection AT chenyeh scutellariabarbataddoninhibitsthemainproteasesmproandtmprss2ofsevereacuterespiratorysyndromecoronavirus2sarscov2infection AT changweichao scutellariabarbataddoninhibitsthemainproteasesmproandtmprss2ofsevereacuterespiratorysyndromecoronavirus2sarscov2infection AT chenhsiaofan scutellariabarbataddoninhibitsthemainproteasesmproandtmprss2ofsevereacuterespiratorysyndromecoronavirus2sarscov2infection AT laihsiangchun scutellariabarbataddoninhibitsthemainproteasesmproandtmprss2ofsevereacuterespiratorysyndromecoronavirus2sarscov2infection AT linyuchun scutellariabarbataddoninhibitsthemainproteasesmproandtmprss2ofsevereacuterespiratorysyndromecoronavirus2sarscov2infection AT wangweijan scutellariabarbataddoninhibitsthemainproteasesmproandtmprss2ofsevereacuterespiratorysyndromecoronavirus2sarscov2infection AT wangyuchuan scutellariabarbataddoninhibitsthemainproteasesmproandtmprss2ofsevereacuterespiratorysyndromecoronavirus2sarscov2infection AT yangchiashin scutellariabarbataddoninhibitsthemainproteasesmproandtmprss2ofsevereacuterespiratorysyndromecoronavirus2sarscov2infection AT wangshaochun scutellariabarbataddoninhibitsthemainproteasesmproandtmprss2ofsevereacuterespiratorysyndromecoronavirus2sarscov2infection AT hungmienchie scutellariabarbataddoninhibitsthemainproteasesmproandtmprss2ofsevereacuterespiratorysyndromecoronavirus2sarscov2infection |