Cargando…
Unsupervised Exemplar-Domain Aware Image-to-Image Translation
Image-to-image translation is used to convert an image of a certain style to another of the target style with the original content preserved. A desired translator should be capable of generating diverse results in a controllable many-to-many fashion. To this end, we design a novel deep translator, n...
Autores principales: | Fu, Yuanbin, Ma, Jiayi, Guo, Xiaojie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147429/ https://www.ncbi.nlm.nih.gov/pubmed/34063192 http://dx.doi.org/10.3390/e23050565 |
Ejemplares similares
-
A Foreground-Aware Framework for Local Face Attribute Transfer
por: Fu, Yuanbin, et al.
Publicado: (2021) -
Unsupervised Image-to-Image Translation: A Review
por: Hoyez, Henri, et al.
Publicado: (2022) -
Attentive Continuous Generative Self-training for Unsupervised Domain Adaptive Medical Image Translation
por: Liu, Xiaofeng, et al.
Publicado: (2023) -
Deblurring traffic sign images based on exemplars
por: Li, Houjie, et al.
Publicado: (2018) -
Exemplar-based image completion using image depth information
por: Xiao, Mang, et al.
Publicado: (2018)