Cargando…
Loop-mediated isothermal amplification (LAMP) assays targeting 18S ribosomal RNA genes for identifying P. vivax and P. ovale species and mitochondrial DNA for detecting the genus Plasmodium
BACKGROUND: Loop-mediated isothermal amplification (LAMP) has been widely used to diagnose various infectious diseases. Malaria is a globally distributed infectious disease attributed to parasites in the genus Plasmodium. It is known that persons infected with Plasmodium vivax and P. ovale are prone...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147439/ https://www.ncbi.nlm.nih.gov/pubmed/34030725 http://dx.doi.org/10.1186/s13071-021-04764-9 |
Sumario: | BACKGROUND: Loop-mediated isothermal amplification (LAMP) has been widely used to diagnose various infectious diseases. Malaria is a globally distributed infectious disease attributed to parasites in the genus Plasmodium. It is known that persons infected with Plasmodium vivax and P. ovale are prone to clinical relapse of symptomatic blood-stage infections. LAMP has not previously been specifically evaluated for its diagnostic performance in detecting P. ovale in an epidemiological study, and no commercial LAMP or rapid diagnostic test (RDT) kits are available for specifically diagnosing infections with P. ovale. METHODS: An assay was designed to target a portion of mitochondrial DNA (mtDNA) among Plasmodium spp., the five human Plasmodium species and two other assays were designed to target the nuclear 18S ribosomal DNA gene (18S rDNA) of either P. vivax or P. ovale for differentiating the two species. The sensitivity of the assays was compared to that of nested PCR using defined concentrations of plasmids containing the target sequences and using limiting dilutions prepared from clinical isolates derived from Chinese workers who had become infected in Africa or near the Chinese border with Myanmar. RESULTS: The results showed that 10(2) copies of the mitochondrial target or 10(2) and 10(3) copies of 18S rDNA could be detected from Plasmodium spp., P. vivax and P. ovale, respectively. In 279 clinical samples, the malaria Pan mtDNA LAMP test performed well when compared with a nested PCR assay (95% confidence interval [CI] sensitivity 98.48–100%; specificity 90.75–100%). When diagnosing clinical cases of infection with P. vivax, the 18S rDNA assay demonstrated an even great sensitivity (95.85–100%) and specificity (98.1–100%). The same was true for clinical infections with P. ovale (sensitivity 90.76–99.96%; specificity 98.34–100%). Using plasmid-positive controls, the limits of detection of Malaria Pan, 18S rDNA P. vivax and 18S rDNA P. ovale LAMP were 100-, 100- and tenfold lower than those of PCR, respectively. CONCLUSION: The novel LAMP assays can greatly aid the rapid, reliable and highly sensitive diagnosis of infections of Plasmodium spp. transmitted among people, including P. vivax and P. ovale, cases of which are most prone to clinical relapse. GRAPHIC ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13071-021-04764-9. |
---|