Cargando…
Cold-Start Problems in Data-Driven Prediction of Drug–Drug Interaction Effects
Combining drugs, a phenomenon often referred to as polypharmacy, can induce additional adverse effects. The identification of adverse combinations is a key task in pharmacovigilance. In this context, in silico approaches based on machine learning are promising as they can learn from a limited number...
Autores principales: | Dewulf, Pieter, Stock, Michiel, De Baets, Bernard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147651/ https://www.ncbi.nlm.nih.gov/pubmed/34063324 http://dx.doi.org/10.3390/ph14050429 |
Ejemplares similares
-
Mitigating cold-start problems in drug-target affinity prediction with interaction knowledge transferring
por: Nguyen, Tri Minh, et al.
Publicado: (2022) -
Predict multi-type drug–drug interactions in cold start scenario
por: Liu, Zun, et al.
Publicado: (2022) -
Linear filtering reveals false negatives in species interaction data
por: Stock, Michiel, et al.
Publicado: (2017) -
Disentangling the Information in Species Interaction Networks
por: Stock, Michiel, et al.
Publicado: (2021) -
Optimal transportation theory for species interaction networks
por: Stock, Michiel, et al.
Publicado: (2021)