Cargando…
Compound dataset and custom code for deep generative multi-target compound design
AIM: Generating a data and software infrastructure for evaluating multi-target compound (MT-CPD) design via deep generative modeling. METHODOLOGY: The REINVENT 2.0 approach for generative modeling was extended for MT-CPD design and a large benchmark data set was curated. EXEMPLARY RESULTS & DATA...
Autores principales: | Blaschke, Thomas, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Future Science Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147756/ https://www.ncbi.nlm.nih.gov/pubmed/34046209 http://dx.doi.org/10.2144/fsoa-2021-0033 |
Ejemplares similares
-
Fine-tuning of a generative neural network for designing multi-target compounds
por: Blaschke, Thomas, et al.
Publicado: (2021) -
Structured data sets of compounds with multi-target and corresponding single-target activity from biological assays
por: Feldmann, Christian, et al.
Publicado: (2021) -
Series of screening compounds with high hit rates for the exploration of multi-target activities and assay interference
por: Stumpfe, Dagmar, et al.
Publicado: (2018) -
Computationally derived compound profiling matrices
por: Vogt, Martin, et al.
Publicado: (2018) -
Collection of analog series-based scaffolds from public compound sources
por: Dimova, Dilyana, et al.
Publicado: (2018)