Cargando…
Forecast the Exacerbation in Patients of Chronic Obstructive Pulmonary Disease with Clinical Indicators Using Machine Learning Techniques
Preventing exacerbation and seeking to determine the severity of the disease during the hospitalization of chronic obstructive pulmonary disease (COPD) patients is a crucial global initiative for chronic obstructive lung disease (GOLD); this option is available only for stable-phase patients. Recent...
Autores principales: | Hussain, Ali, Choi, Hee-Eun, Kim, Hyo-Jung, Aich, Satyabrata, Saqlain, Muhammad, Kim, Hee-Cheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147791/ https://www.ncbi.nlm.nih.gov/pubmed/34064395 http://dx.doi.org/10.3390/diagnostics11050829 |
Ejemplares similares
-
A Machine-learning Approach to Forecast Aggravation Risk in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease with Clinical Indicators
por: Peng, Junfeng, et al.
Publicado: (2020) -
Detection of Parkinson’s Disease from 3T T1 Weighted MRI Scans Using 3D Convolutional Neural Network
por: Chakraborty, Sabyasachi, et al.
Publicado: (2020) -
3D Textural, Morphological and Statistical Analysis of Voxel of Interests in 3T MRI Scans for the Detection of Parkinson’s Disease Using Artificial Neural Networks
por: Chakraborty, Sabyasachi, et al.
Publicado: (2020) -
Development of a System for Storing and Executing Bio-Signal Analysis Algorithms Developed in Different Languages
por: Joo, Moon-Il, et al.
Publicado: (2021) -
Author Correction: A Machine-learning Approach to Forecast Aggravation Risk in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease with Clinical Indicators
por: Peng, Junfeng, et al.
Publicado: (2021)