Cargando…
Hybrid Binary Dragonfly Algorithm with Simulated Annealing for Feature Selection
There are various fields are affected by the growth of data dimensionality. The major problems which are resulted from high dimensionality of data including high memory requirements, high computational cost, and low machine learning classifier performance. Therefore, proper selection of relevant fea...
Autores principales: | Chantar, Hamouda, Tubishat, Mohammad, Essgaer, Mansour, Mirjalili, Seyedali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147911/ https://www.ncbi.nlm.nih.gov/pubmed/34056623 http://dx.doi.org/10.1007/s42979-021-00687-5 |
Ejemplares similares
-
A Hybrid Dragonfly Algorithm for Efficiency Optimization of Induction Motors
por: Shukla, Niraj Kumar, et al.
Publicado: (2022) -
Stock market prediction using Altruistic Dragonfly Algorithm
por: Chatterjee, Bitanu, et al.
Publicado: (2023) -
BCOVIDOA: A Novel Binary Coronavirus Disease Optimization Algorithm for Feature Selection
por: Khalid, Asmaa M., et al.
Publicado: (2022) -
Wavelength Selection for NIR Spectroscopy Based on the Binary Dragonfly Algorithm
por: Chen, Yuanyuan, et al.
Publicado: (2019) -
Binary Simulated Normal Distribution Optimizer for feature selection: Theory and application in COVID-19 datasets
por: Ahmed, Shameem, et al.
Publicado: (2022)