Cargando…

Effects of Respiratory Muscle Training on Baroreflex Sensitivity, Respiratory Function, and Serum Oxidative Stress in Acute Cervical Spinal Cord Injury

Background: respiratory complications are a leading cause of morbidity and mortality in individuals with spinal cord injury (SCI). We examined the effects of respiratory muscle training (RMT) in patients with acute cervical SCI. Methods: this prospective trial enrolled 44 adults with acute cervical...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hung-Chen, Lin, Yu-Tsai, Huang, Chih-Cheng, Lin, Meng-Chih, Liaw, Mei-Yun, Lu, Cheng-Hsien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147917/
https://www.ncbi.nlm.nih.gov/pubmed/34062971
http://dx.doi.org/10.3390/jpm11050377
Descripción
Sumario:Background: respiratory complications are a leading cause of morbidity and mortality in individuals with spinal cord injury (SCI). We examined the effects of respiratory muscle training (RMT) in patients with acute cervical SCI. Methods: this prospective trial enrolled 44 adults with acute cervical SCI, of which twenty received RMT and twenty-four did not receive RMT. Respiratory function, cardiovascular autonomic function, and reactive oxidative species (ROS) were compared. The experimental group received 40-min high-intensity home-based RMT 7 days per week for 10 weeks. The control group received a sham intervention for a similar period. The primary outcomes were the effects of RMT on pulmonary and cardiovascular autonomic function, and ROS production in individuals with acute cervical SCI. Results: significant differences between the two groups in cardiovascular autonomic function and the heart rate response to deep breathing (p = 0.017) were found at the 6-month follow-up. After RMT, the maximal inspiratory pressure (p = 0.042) and thiobarbituric acid-reactive substances (TBARS) (p = 0.006) improved significantly, while there was no significant difference in the maximal expiratory pressure. Significant differences between the two groups in tidal volume (p = 0.005) and the rapid shallow breathing index (p = 0.031) were found at 6 months. Notably, the SF-36 (both the physical (PCS) and mental (MCS) component summaries) in the RMT group had decreased significantly at the 6-month follow-up, whereas the clinical scores did not differ significantly (p = 0.333) after RMT therapy. Conclusions: High-intensity home-based RMT can improve pulmonary function and endurance and reduce breathing difficulties in patients with respiratory muscle weakness after injury. It is recommended for rehabilitation after spinal cord injury.