Cargando…

Apigenin and Structurally Related Flavonoids Allosterically Potentiate the Function of Human α7-Nicotinic Acetylcholine Receptors Expressed in SH-EP1 Cells

Phytochemicals, such as monoterpenes, polyphenols, curcuminoids, and flavonoids, are known to have anti-inflammatory, antioxidant, neuroprotective, and procognitive effects. In this study, the effects of several polyhydroxy flavonoids, as derivatives of differently substituted 5,7-dihydroxy-4H-chrom...

Descripción completa

Detalles Bibliográficos
Autores principales: Shabbir, Waheed, Yang, Keun-Hang Susan, Sadek, Bassem, Oz, Murat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147998/
https://www.ncbi.nlm.nih.gov/pubmed/34062982
http://dx.doi.org/10.3390/cells10051110
Descripción
Sumario:Phytochemicals, such as monoterpenes, polyphenols, curcuminoids, and flavonoids, are known to have anti-inflammatory, antioxidant, neuroprotective, and procognitive effects. In this study, the effects of several polyhydroxy flavonoids, as derivatives of differently substituted 5,7-dihydroxy-4H-chromen-4-one including apigenin, genistein, luteolin, kaempferol, quercetin, gossypetin, and phloretin with different lipophilicities (cLogP), as well as topological polar surface area (TPSA), were tested for induction of Ca(2+) transients by α7 human nicotinic acetylcholine (α7 nACh) receptors expressed in SH-EP1 cells. Apigenin (10 μM) caused a significant potentiation of ACh (30 μM)-induced Ca(2+) transients, but did not affect Ca(2+) transients induced by high K(+) (60 mM) containing solutions. Co-application of apigenin with ACh was equally effective as apigenin preincubation. However, the effect of apigenin significantly diminished by increasing ACh concentrations. The flavonoids tested also potentiated α(7) nACh mediated Ca(2+) transients with descending potency (highest to lowest) by genistein, gossypetin, kaempferol, luteolin, phloretin, quercetin, and apigenin. The specific binding of α7 nACh receptor antagonist [(125)I]-bungarotoxin remained unchanged in the presence of any of the tested polyhydroxy flavonoids, suggesting that these compounds act as positive allosteric modulators of the α7-nACh receptor in SH-EP1 cells. These findings suggest a clinical potential for these phytochemicals in the treatment of various human diseases from pain to inflammation and neural disease.