Cargando…
Rational design of a high-efficiency, multivariate metal–organic framework phosphor for white LED bulbs
Developing rare-earth element (REE) free yellow phosphors that can be excited by 455 nm blue light will help to decrease the environmental impact of manufacturing energy efficient white light-emitting diodes (WLEDs), decrease their cost of production, and accelerate their adoption across the globe....
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8148306/ https://www.ncbi.nlm.nih.gov/pubmed/34123274 http://dx.doi.org/10.1039/c9sc05721h |
_version_ | 1783697807939469312 |
---|---|
author | Lustig, William P. Shen, Zeqing Teat, Simon J. Javed, Nasir Velasco, Ever O'Carroll, Deirdre M. Li, Jing |
author_facet | Lustig, William P. Shen, Zeqing Teat, Simon J. Javed, Nasir Velasco, Ever O'Carroll, Deirdre M. Li, Jing |
author_sort | Lustig, William P. |
collection | PubMed |
description | Developing rare-earth element (REE) free yellow phosphors that can be excited by 455 nm blue light will help to decrease the environmental impact of manufacturing energy efficient white light-emitting diodes (WLEDs), decrease their cost of production, and accelerate their adoption across the globe. Luminescent metal–organic frameworks (LMOFs) demonstrate strong potential for use as phosphor materials and have been investigated intensively in recent years. However, the majority are not suitable for the current WLED technology due to their lack of blue excitability. Therefore, designing highly efficient blue-excitable, yellow-emitting, REE free LMOFs is much needed. With an internal quantum yield of 76% at 455 nm excitation, LMOF-231 is the most efficient blue-excitable yellow-emitting LMOF phosphor reported to date. Spectroscopic studies suggest that this quantum yield could be further improved by narrowing the material's bandgap. Based on this information and guided by DFT calculations, we apply a ligand substitution strategy to produce a semi-fluorinated analogue of LMOF-231, LMOF-305. With an internal quantum yield of 88% (λ(em) = 550 nm) under 455 nm excitation, this LMOF sets a new record for luminescent efficiency in yellow-emitting, blue-excitable, REE free LMOF phosphors. Temperature-dependent and polarized photoluminescence (PL) studies have provided insight on the mechanism of emission and origin of the significant PL enhancement. |
format | Online Article Text |
id | pubmed-8148306 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-81483062021-06-11 Rational design of a high-efficiency, multivariate metal–organic framework phosphor for white LED bulbs Lustig, William P. Shen, Zeqing Teat, Simon J. Javed, Nasir Velasco, Ever O'Carroll, Deirdre M. Li, Jing Chem Sci Chemistry Developing rare-earth element (REE) free yellow phosphors that can be excited by 455 nm blue light will help to decrease the environmental impact of manufacturing energy efficient white light-emitting diodes (WLEDs), decrease their cost of production, and accelerate their adoption across the globe. Luminescent metal–organic frameworks (LMOFs) demonstrate strong potential for use as phosphor materials and have been investigated intensively in recent years. However, the majority are not suitable for the current WLED technology due to their lack of blue excitability. Therefore, designing highly efficient blue-excitable, yellow-emitting, REE free LMOFs is much needed. With an internal quantum yield of 76% at 455 nm excitation, LMOF-231 is the most efficient blue-excitable yellow-emitting LMOF phosphor reported to date. Spectroscopic studies suggest that this quantum yield could be further improved by narrowing the material's bandgap. Based on this information and guided by DFT calculations, we apply a ligand substitution strategy to produce a semi-fluorinated analogue of LMOF-231, LMOF-305. With an internal quantum yield of 88% (λ(em) = 550 nm) under 455 nm excitation, this LMOF sets a new record for luminescent efficiency in yellow-emitting, blue-excitable, REE free LMOF phosphors. Temperature-dependent and polarized photoluminescence (PL) studies have provided insight on the mechanism of emission and origin of the significant PL enhancement. The Royal Society of Chemistry 2020-01-10 /pmc/articles/PMC8148306/ /pubmed/34123274 http://dx.doi.org/10.1039/c9sc05721h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Lustig, William P. Shen, Zeqing Teat, Simon J. Javed, Nasir Velasco, Ever O'Carroll, Deirdre M. Li, Jing Rational design of a high-efficiency, multivariate metal–organic framework phosphor for white LED bulbs |
title | Rational design of a high-efficiency, multivariate metal–organic framework phosphor for white LED bulbs |
title_full | Rational design of a high-efficiency, multivariate metal–organic framework phosphor for white LED bulbs |
title_fullStr | Rational design of a high-efficiency, multivariate metal–organic framework phosphor for white LED bulbs |
title_full_unstemmed | Rational design of a high-efficiency, multivariate metal–organic framework phosphor for white LED bulbs |
title_short | Rational design of a high-efficiency, multivariate metal–organic framework phosphor for white LED bulbs |
title_sort | rational design of a high-efficiency, multivariate metal–organic framework phosphor for white led bulbs |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8148306/ https://www.ncbi.nlm.nih.gov/pubmed/34123274 http://dx.doi.org/10.1039/c9sc05721h |
work_keys_str_mv | AT lustigwilliamp rationaldesignofahighefficiencymultivariatemetalorganicframeworkphosphorforwhiteledbulbs AT shenzeqing rationaldesignofahighefficiencymultivariatemetalorganicframeworkphosphorforwhiteledbulbs AT teatsimonj rationaldesignofahighefficiencymultivariatemetalorganicframeworkphosphorforwhiteledbulbs AT javednasir rationaldesignofahighefficiencymultivariatemetalorganicframeworkphosphorforwhiteledbulbs AT velascoever rationaldesignofahighefficiencymultivariatemetalorganicframeworkphosphorforwhiteledbulbs AT ocarrolldeirdrem rationaldesignofahighefficiencymultivariatemetalorganicframeworkphosphorforwhiteledbulbs AT lijing rationaldesignofahighefficiencymultivariatemetalorganicframeworkphosphorforwhiteledbulbs |