Cargando…
Combining Genetic and Multidimensional Analyses to Identify Interpretive Traits Related to Water Shortage Tolerance as an Indirect Selection Tool for Detecting Genotypes of Drought Tolerance in Wheat Breeding
Water shortages have direct adverse effects on wheat productivity and growth worldwide, vertically and horizontally. Productivity may be promoted using water shortage-tolerant wheat genotypes. High-throughput tools have supported plant breeders in increasing the rate of stability of the genetic gain...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8148561/ https://www.ncbi.nlm.nih.gov/pubmed/34066929 http://dx.doi.org/10.3390/plants10050931 |
Sumario: | Water shortages have direct adverse effects on wheat productivity and growth worldwide, vertically and horizontally. Productivity may be promoted using water shortage-tolerant wheat genotypes. High-throughput tools have supported plant breeders in increasing the rate of stability of the genetic gain of interpretive traits for wheat productivity through multidimensional technical methods. We used 27 agrophysiological interpretive traits for grain yield (GY) of 25 bread wheat genotypes under water shortage stress conditions for two seasons. Genetic parameters and multidimensional analyses were used to identify genetic and phenotypic variations of the wheat genotypes used, combining these strategies effectively to achieve a balance. Considerable high genotypic variations were observed for 27 traits. Eleven interpretive traits related to GY had combined high heritability (h(2) > 60%) and genetic gain (>20%), compared to GY, which showed moderate values both for heritability (57.60%) and genetic gain (16.89%). It was determined that six out of eleven traits (dry leaf weight (DLW), canopy temperature (CT), relative water content (RWC), flag leaf area (FLA), green leaves area (GLA) and leaf area index (LAI)) loaded the highest onto PC1 and PC2 (with scores of >0.27), and five of them had a positive trend with GY, while the CT trait had a negative correlation determined by principal component analysis (PCA). Genetic parameters and multidimensional analyses (PCA, stepwise regression, and path coefficient) showed that CT, RWC, GLA, and LAI were the most important interpretive traits for GY. Selection based on these four interpretive traits might improve genetic gain for GY in environments that are vulnerable to water shortages. The membership index and clustering analysis based on these four traits were significantly correlated, with some deviation, and classified genotypes into five groups. Highly tolerant, tolerant, intermediate, sensitive and highly sensitive clusters represented six, eight, two, three and six genotypes, respectively. The conclusions drawn from the membership index and clustering analysis, signifying that there were clear separations between the water shortage tolerance groups, were confirmed through discriminant analysis. MANOVA indicated that there were considerable variations between the five water shortage tolerance groups. The tolerated genotypes (DHL02, DHL30, DHL26, Misr1, Pavone-76 and DHL08) can be recommended as interesting new genetic sources for water shortage-tolerant wheat breeding programs. |
---|