Cargando…
Feature Selection and Classification of Clinical Datasets Using Bioinspired Algorithms and Super Learner
A computer-aided diagnosis (CAD) system that employs a super learner to diagnose the presence or absence of a disease has been developed. Each clinical dataset is preprocessed and split into training set (60%) and testing set (40%). A wrapper approach that uses three bioinspired algorithms, namely,...
Autores principales: | Murugesan, S., Bhuvaneswaran, R. S., Khanna Nehemiah, H., Keerthana Sankari, S., Nancy Jane, Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149240/ https://www.ncbi.nlm.nih.gov/pubmed/34055041 http://dx.doi.org/10.1155/2021/6662420 |
Ejemplares similares
-
Correlation-Based Ensemble Feature Selection Using Bioinspired Algorithms and Classification Using Backpropagation Neural Network
por: Elgin Christo, V. R., et al.
Publicado: (2019) -
An Efficient Feature Subset Selection Algorithm for Classification of Multidimensional Dataset
por: Devaraj, Senthilkumar, et al.
Publicado: (2015) -
Predicting cumulative lead (Pb) exposure using the Super Learner algorithm
por: Wang, Xin, et al.
Publicado: (2023) -
Occupations on the map: Using a super learner algorithm to downscale labor statistics
por: van Dijk, Michiel, et al.
Publicado: (2022) -
A SuperLearner Approach to Predict Run-In Selection in Clinical Trials
por: Lanera, Corrado, et al.
Publicado: (2022)