Cargando…

Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform

Computational modeling and human studies suggest that transcranial alternating current stimulation (tACS) modulates alpha oscillations by entrainment. Yet, a direct examination of how tACS interacts with neuronal spiking activity that gives rise to the alpha oscillation in the thalamo-cortical syste...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Wei A., Stitt, Iain M., Negahbani, Ehsan, Passey, D. J., Ahn, Sangtae, Davey, Marshall, Dannhauer, Moritz, Doan, Thien T., Hoover, Anna C., Peterchev, Angel V., Radtke-Schuller, Susanne, Fröhlich, Flavio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149416/
https://www.ncbi.nlm.nih.gov/pubmed/34035240
http://dx.doi.org/10.1038/s41467-021-23021-2
_version_ 1783697956274176000
author Huang, Wei A.
Stitt, Iain M.
Negahbani, Ehsan
Passey, D. J.
Ahn, Sangtae
Davey, Marshall
Dannhauer, Moritz
Doan, Thien T.
Hoover, Anna C.
Peterchev, Angel V.
Radtke-Schuller, Susanne
Fröhlich, Flavio
author_facet Huang, Wei A.
Stitt, Iain M.
Negahbani, Ehsan
Passey, D. J.
Ahn, Sangtae
Davey, Marshall
Dannhauer, Moritz
Doan, Thien T.
Hoover, Anna C.
Peterchev, Angel V.
Radtke-Schuller, Susanne
Fröhlich, Flavio
author_sort Huang, Wei A.
collection PubMed
description Computational modeling and human studies suggest that transcranial alternating current stimulation (tACS) modulates alpha oscillations by entrainment. Yet, a direct examination of how tACS interacts with neuronal spiking activity that gives rise to the alpha oscillation in the thalamo-cortical system has been lacking. Here, we demonstrate how tACS entrains endogenous alpha oscillations in head-fixed awake ferrets. We first show that endogenous alpha oscillations in the posterior parietal cortex drive the primary visual cortex and the higher-order visual thalamus. Spike-field coherence is largest for the alpha frequency band, and presumed fast-spiking inhibitory interneurons exhibit strongest coupling to this oscillation. We then apply alpha-tACS that results in a field strength comparable to what is commonly used in humans (<0.5 mV/mm). Both in these ferret experiments and in a computational model of the thalamo-cortical system, tACS entrains alpha oscillations by following the theoretically predicted Arnold tongue. Intriguingly, the fast-spiking inhibitory interneurons exhibit a stronger entrainment response to tACS in both the ferret experiments and the computational model, likely due to their stronger endogenous coupling to the alpha oscillation. Our findings demonstrate the in vivo mechanism of action for the modulation of the alpha oscillation by tACS.
format Online
Article
Text
id pubmed-8149416
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-81494162021-06-01 Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform Huang, Wei A. Stitt, Iain M. Negahbani, Ehsan Passey, D. J. Ahn, Sangtae Davey, Marshall Dannhauer, Moritz Doan, Thien T. Hoover, Anna C. Peterchev, Angel V. Radtke-Schuller, Susanne Fröhlich, Flavio Nat Commun Article Computational modeling and human studies suggest that transcranial alternating current stimulation (tACS) modulates alpha oscillations by entrainment. Yet, a direct examination of how tACS interacts with neuronal spiking activity that gives rise to the alpha oscillation in the thalamo-cortical system has been lacking. Here, we demonstrate how tACS entrains endogenous alpha oscillations in head-fixed awake ferrets. We first show that endogenous alpha oscillations in the posterior parietal cortex drive the primary visual cortex and the higher-order visual thalamus. Spike-field coherence is largest for the alpha frequency band, and presumed fast-spiking inhibitory interneurons exhibit strongest coupling to this oscillation. We then apply alpha-tACS that results in a field strength comparable to what is commonly used in humans (<0.5 mV/mm). Both in these ferret experiments and in a computational model of the thalamo-cortical system, tACS entrains alpha oscillations by following the theoretically predicted Arnold tongue. Intriguingly, the fast-spiking inhibitory interneurons exhibit a stronger entrainment response to tACS in both the ferret experiments and the computational model, likely due to their stronger endogenous coupling to the alpha oscillation. Our findings demonstrate the in vivo mechanism of action for the modulation of the alpha oscillation by tACS. Nature Publishing Group UK 2021-05-25 /pmc/articles/PMC8149416/ /pubmed/34035240 http://dx.doi.org/10.1038/s41467-021-23021-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Huang, Wei A.
Stitt, Iain M.
Negahbani, Ehsan
Passey, D. J.
Ahn, Sangtae
Davey, Marshall
Dannhauer, Moritz
Doan, Thien T.
Hoover, Anna C.
Peterchev, Angel V.
Radtke-Schuller, Susanne
Fröhlich, Flavio
Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform
title Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform
title_full Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform
title_fullStr Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform
title_full_unstemmed Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform
title_short Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform
title_sort transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149416/
https://www.ncbi.nlm.nih.gov/pubmed/34035240
http://dx.doi.org/10.1038/s41467-021-23021-2
work_keys_str_mv AT huangweia transcranialalternatingcurrentstimulationentrainsalphaoscillationsbypreferentialphasesynchronizationoffastspikingcorticalneuronstostimulationwaveform
AT stittiainm transcranialalternatingcurrentstimulationentrainsalphaoscillationsbypreferentialphasesynchronizationoffastspikingcorticalneuronstostimulationwaveform
AT negahbaniehsan transcranialalternatingcurrentstimulationentrainsalphaoscillationsbypreferentialphasesynchronizationoffastspikingcorticalneuronstostimulationwaveform
AT passeydj transcranialalternatingcurrentstimulationentrainsalphaoscillationsbypreferentialphasesynchronizationoffastspikingcorticalneuronstostimulationwaveform
AT ahnsangtae transcranialalternatingcurrentstimulationentrainsalphaoscillationsbypreferentialphasesynchronizationoffastspikingcorticalneuronstostimulationwaveform
AT daveymarshall transcranialalternatingcurrentstimulationentrainsalphaoscillationsbypreferentialphasesynchronizationoffastspikingcorticalneuronstostimulationwaveform
AT dannhauermoritz transcranialalternatingcurrentstimulationentrainsalphaoscillationsbypreferentialphasesynchronizationoffastspikingcorticalneuronstostimulationwaveform
AT doanthient transcranialalternatingcurrentstimulationentrainsalphaoscillationsbypreferentialphasesynchronizationoffastspikingcorticalneuronstostimulationwaveform
AT hooverannac transcranialalternatingcurrentstimulationentrainsalphaoscillationsbypreferentialphasesynchronizationoffastspikingcorticalneuronstostimulationwaveform
AT peterchevangelv transcranialalternatingcurrentstimulationentrainsalphaoscillationsbypreferentialphasesynchronizationoffastspikingcorticalneuronstostimulationwaveform
AT radtkeschullersusanne transcranialalternatingcurrentstimulationentrainsalphaoscillationsbypreferentialphasesynchronizationoffastspikingcorticalneuronstostimulationwaveform
AT frohlichflavio transcranialalternatingcurrentstimulationentrainsalphaoscillationsbypreferentialphasesynchronizationoffastspikingcorticalneuronstostimulationwaveform