Cargando…

Cloning and expression of the EsxA gene and the growth-promoting effects of the encoded protein on rice seedlings

An EsxA-encoding gene (esxA) was previously identified in the genome of the plant growth-promoting rhizobacterium Paenibacillus terrae strain NK3-4. The esxA was cloned and expressed in Pichia pastoris, after which the effects of the EsxA protein on rice seedling growth were analyzed to determine wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Wen-qing, Wang, Xin, Tang, Yi-cong, Yan, Feng-chao, Liu, Wen-zhi, Zheng, Gui-ping, Yin, Dong-mei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149525/
https://www.ncbi.nlm.nih.gov/pubmed/34032943
http://dx.doi.org/10.1186/s13568-021-01234-4
Descripción
Sumario:An EsxA-encoding gene (esxA) was previously identified in the genome of the plant growth-promoting rhizobacterium Paenibacillus terrae strain NK3-4. The esxA was cloned and expressed in Pichia pastoris, after which the effects of the EsxA protein on rice seedling growth were analyzed to determine whether EsxA contributes to the plant growth-promoting activity of strain NK3-4. The esxA was successfully cloned from the NK3-4 genome and ligated to the eukaryotic expression vector pPICZαA. The resulting pPICZαA-esxA recombinant plasmid was transinfected into yeast cells, and esxA expression in the yeast cells was confirmed. The treatment of seed- buds with the EsxA protein increased the root length by 1.35-times, but decreased the bud length. Additionally, in rice seedlings treated with EsxA, the root and shoot lengths increased by 2.6- and 1.7-times, respectively. These findings imply that EsxA is important for the promotion of rice plant growth by P. terrae strain NK3-4. Furthermore, the construction of the esxA expression vector and the engineered strain may be useful for future investigations of the mechanism underlying the plant growth-promoting effects of EsxA, with implications for the application of EsxA for regulating plant growth.