Cargando…
Holographic optical field recovery using a regularized untrained deep decoder network
Image reconstruction using minimal measured information has been a long-standing open problem in many computational imaging approaches, in particular in-line holography. Many solutions are devised based on compressive sensing (CS) techniques with handcrafted image priors or supervised deep neural ne...
Autores principales: | Niknam, Farhad, Qazvini, Hamed, Latifi, Hamid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149647/ https://www.ncbi.nlm.nih.gov/pubmed/34035387 http://dx.doi.org/10.1038/s41598-021-90312-5 |
Ejemplares similares
-
Phase recovery and holographic image reconstruction using deep learning in neural networks
por: Rivenson, Yair, et al.
Publicado: (2018) -
Face detection in untrained deep neural networks
por: Baek, Seungdae, et al.
Publicado: (2021) -
Visual number sense in untrained deep neural networks
por: Kim, Gwangsu, et al.
Publicado: (2021) -
Invariance of object detection in untrained deep neural networks
por: Cheon, Jeonghwan, et al.
Publicado: (2022) -
Holographic deep learning for rapid optical screening of anthrax spores
por: Jo, YoungJu, et al.
Publicado: (2017)