Cargando…
Deep learning for large scale MRI-based morphological phenotyping of osteoarthritis
Osteoarthritis (OA) develops through heterogenous pathophysiologic pathways. As a result, no regulatory agency approved disease modifying OA drugs are available to date. Stratifying knees into MRI-based morphological phenotypes may provide insight into predicting future OA incidence, leading to impr...
Autores principales: | Namiri, Nikan K., Lee, Jinhee, Astuto, Bruno, Liu, Felix, Shah, Rutwik, Majumdar, Sharmila, Pedoia, Valentina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149826/ https://www.ncbi.nlm.nih.gov/pubmed/34035386 http://dx.doi.org/10.1038/s41598-021-90292-6 |
Ejemplares similares
-
Poster 242: Deep Learning for Identifying Patellofemoral Measurements Associated with Cartilage Lesions on MRI
por: Martinez, Alejandro Morales, et al.
Publicado: (2022) -
Deep Learning Predicts Total Knee Replacement from Magnetic Resonance Images
por: Tolpadi, Aniket A., et al.
Publicado: (2020) -
Uncovering associations between data-driven learned qMRI biomarkers and chronic pain
por: Morales, Alejandro G., et al.
Publicado: (2021) -
Utilizing a Digital Swarm Intelligence Platform to Improve Consensus Among Radiologists and Exploring Its Applications
por: Shah, Rutwik, et al.
Publicado: (2022) -
Lumbar intervertebral disc characterization through quantitative MRI analysis: An automatic voxel‐based relaxometry approach
por: Iriondo, Claudia, et al.
Publicado: (2020)