Cargando…
Sulfide catabolism ameliorates hypoxic brain injury
The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain’s sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturall...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149856/ https://www.ncbi.nlm.nih.gov/pubmed/34035265 http://dx.doi.org/10.1038/s41467-021-23363-x |
_version_ | 1783698036394819584 |
---|---|
author | Marutani, Eizo Morita, Masanobu Hirai, Shuichi Kai, Shinichi Grange, Robert M. H. Miyazaki, Yusuke Nagashima, Fumiaki Traeger, Lisa Magliocca, Aurora Ida, Tomoaki Matsunaga, Tetsuro Flicker, Daniel R. Corman, Benjamin Mori, Naohiro Yamazaki, Yumiko Batten, Annabelle Li, Rebecca Tanaka, Tomohiro Ikeda, Takamitsu Nakagawa, Akito Atochin, Dmitriy N. Ihara, Hideshi Olenchock, Benjamin A. Shen, Xinggui Nishida, Motohiro Hanaoka, Kenjiro Kevil, Christopher G. Xian, Ming Bloch, Donald B. Akaike, Takaaki Hindle, Allyson G. Motohashi, Hozumi Ichinose, Fumito |
author_facet | Marutani, Eizo Morita, Masanobu Hirai, Shuichi Kai, Shinichi Grange, Robert M. H. Miyazaki, Yusuke Nagashima, Fumiaki Traeger, Lisa Magliocca, Aurora Ida, Tomoaki Matsunaga, Tetsuro Flicker, Daniel R. Corman, Benjamin Mori, Naohiro Yamazaki, Yumiko Batten, Annabelle Li, Rebecca Tanaka, Tomohiro Ikeda, Takamitsu Nakagawa, Akito Atochin, Dmitriy N. Ihara, Hideshi Olenchock, Benjamin A. Shen, Xinggui Nishida, Motohiro Hanaoka, Kenjiro Kevil, Christopher G. Xian, Ming Bloch, Donald B. Akaike, Takaaki Hindle, Allyson G. Motohashi, Hozumi Ichinose, Fumito |
author_sort | Marutani, Eizo |
collection | PubMed |
description | The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain’s sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury. |
format | Online Article Text |
id | pubmed-8149856 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-81498562021-06-11 Sulfide catabolism ameliorates hypoxic brain injury Marutani, Eizo Morita, Masanobu Hirai, Shuichi Kai, Shinichi Grange, Robert M. H. Miyazaki, Yusuke Nagashima, Fumiaki Traeger, Lisa Magliocca, Aurora Ida, Tomoaki Matsunaga, Tetsuro Flicker, Daniel R. Corman, Benjamin Mori, Naohiro Yamazaki, Yumiko Batten, Annabelle Li, Rebecca Tanaka, Tomohiro Ikeda, Takamitsu Nakagawa, Akito Atochin, Dmitriy N. Ihara, Hideshi Olenchock, Benjamin A. Shen, Xinggui Nishida, Motohiro Hanaoka, Kenjiro Kevil, Christopher G. Xian, Ming Bloch, Donald B. Akaike, Takaaki Hindle, Allyson G. Motohashi, Hozumi Ichinose, Fumito Nat Commun Article The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain’s sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury. Nature Publishing Group UK 2021-05-25 /pmc/articles/PMC8149856/ /pubmed/34035265 http://dx.doi.org/10.1038/s41467-021-23363-x Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Marutani, Eizo Morita, Masanobu Hirai, Shuichi Kai, Shinichi Grange, Robert M. H. Miyazaki, Yusuke Nagashima, Fumiaki Traeger, Lisa Magliocca, Aurora Ida, Tomoaki Matsunaga, Tetsuro Flicker, Daniel R. Corman, Benjamin Mori, Naohiro Yamazaki, Yumiko Batten, Annabelle Li, Rebecca Tanaka, Tomohiro Ikeda, Takamitsu Nakagawa, Akito Atochin, Dmitriy N. Ihara, Hideshi Olenchock, Benjamin A. Shen, Xinggui Nishida, Motohiro Hanaoka, Kenjiro Kevil, Christopher G. Xian, Ming Bloch, Donald B. Akaike, Takaaki Hindle, Allyson G. Motohashi, Hozumi Ichinose, Fumito Sulfide catabolism ameliorates hypoxic brain injury |
title | Sulfide catabolism ameliorates hypoxic brain injury |
title_full | Sulfide catabolism ameliorates hypoxic brain injury |
title_fullStr | Sulfide catabolism ameliorates hypoxic brain injury |
title_full_unstemmed | Sulfide catabolism ameliorates hypoxic brain injury |
title_short | Sulfide catabolism ameliorates hypoxic brain injury |
title_sort | sulfide catabolism ameliorates hypoxic brain injury |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149856/ https://www.ncbi.nlm.nih.gov/pubmed/34035265 http://dx.doi.org/10.1038/s41467-021-23363-x |
work_keys_str_mv | AT marutanieizo sulfidecatabolismameliorateshypoxicbraininjury AT moritamasanobu sulfidecatabolismameliorateshypoxicbraininjury AT hiraishuichi sulfidecatabolismameliorateshypoxicbraininjury AT kaishinichi sulfidecatabolismameliorateshypoxicbraininjury AT grangerobertmh sulfidecatabolismameliorateshypoxicbraininjury AT miyazakiyusuke sulfidecatabolismameliorateshypoxicbraininjury AT nagashimafumiaki sulfidecatabolismameliorateshypoxicbraininjury AT traegerlisa sulfidecatabolismameliorateshypoxicbraininjury AT maglioccaaurora sulfidecatabolismameliorateshypoxicbraininjury AT idatomoaki sulfidecatabolismameliorateshypoxicbraininjury AT matsunagatetsuro sulfidecatabolismameliorateshypoxicbraininjury AT flickerdanielr sulfidecatabolismameliorateshypoxicbraininjury AT cormanbenjamin sulfidecatabolismameliorateshypoxicbraininjury AT morinaohiro sulfidecatabolismameliorateshypoxicbraininjury AT yamazakiyumiko sulfidecatabolismameliorateshypoxicbraininjury AT battenannabelle sulfidecatabolismameliorateshypoxicbraininjury AT lirebecca sulfidecatabolismameliorateshypoxicbraininjury AT tanakatomohiro sulfidecatabolismameliorateshypoxicbraininjury AT ikedatakamitsu sulfidecatabolismameliorateshypoxicbraininjury AT nakagawaakito sulfidecatabolismameliorateshypoxicbraininjury AT atochindmitriyn sulfidecatabolismameliorateshypoxicbraininjury AT iharahideshi sulfidecatabolismameliorateshypoxicbraininjury AT olenchockbenjamina sulfidecatabolismameliorateshypoxicbraininjury AT shenxinggui sulfidecatabolismameliorateshypoxicbraininjury AT nishidamotohiro sulfidecatabolismameliorateshypoxicbraininjury AT hanaokakenjiro sulfidecatabolismameliorateshypoxicbraininjury AT kevilchristopherg sulfidecatabolismameliorateshypoxicbraininjury AT xianming sulfidecatabolismameliorateshypoxicbraininjury AT blochdonaldb sulfidecatabolismameliorateshypoxicbraininjury AT akaiketakaaki sulfidecatabolismameliorateshypoxicbraininjury AT hindleallysong sulfidecatabolismameliorateshypoxicbraininjury AT motohashihozumi sulfidecatabolismameliorateshypoxicbraininjury AT ichinosefumito sulfidecatabolismameliorateshypoxicbraininjury |