Cargando…

Sulfide catabolism ameliorates hypoxic brain injury

The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain’s sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturall...

Descripción completa

Detalles Bibliográficos
Autores principales: Marutani, Eizo, Morita, Masanobu, Hirai, Shuichi, Kai, Shinichi, Grange, Robert M. H., Miyazaki, Yusuke, Nagashima, Fumiaki, Traeger, Lisa, Magliocca, Aurora, Ida, Tomoaki, Matsunaga, Tetsuro, Flicker, Daniel R., Corman, Benjamin, Mori, Naohiro, Yamazaki, Yumiko, Batten, Annabelle, Li, Rebecca, Tanaka, Tomohiro, Ikeda, Takamitsu, Nakagawa, Akito, Atochin, Dmitriy N., Ihara, Hideshi, Olenchock, Benjamin A., Shen, Xinggui, Nishida, Motohiro, Hanaoka, Kenjiro, Kevil, Christopher G., Xian, Ming, Bloch, Donald B., Akaike, Takaaki, Hindle, Allyson G., Motohashi, Hozumi, Ichinose, Fumito
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149856/
https://www.ncbi.nlm.nih.gov/pubmed/34035265
http://dx.doi.org/10.1038/s41467-021-23363-x
_version_ 1783698036394819584
author Marutani, Eizo
Morita, Masanobu
Hirai, Shuichi
Kai, Shinichi
Grange, Robert M. H.
Miyazaki, Yusuke
Nagashima, Fumiaki
Traeger, Lisa
Magliocca, Aurora
Ida, Tomoaki
Matsunaga, Tetsuro
Flicker, Daniel R.
Corman, Benjamin
Mori, Naohiro
Yamazaki, Yumiko
Batten, Annabelle
Li, Rebecca
Tanaka, Tomohiro
Ikeda, Takamitsu
Nakagawa, Akito
Atochin, Dmitriy N.
Ihara, Hideshi
Olenchock, Benjamin A.
Shen, Xinggui
Nishida, Motohiro
Hanaoka, Kenjiro
Kevil, Christopher G.
Xian, Ming
Bloch, Donald B.
Akaike, Takaaki
Hindle, Allyson G.
Motohashi, Hozumi
Ichinose, Fumito
author_facet Marutani, Eizo
Morita, Masanobu
Hirai, Shuichi
Kai, Shinichi
Grange, Robert M. H.
Miyazaki, Yusuke
Nagashima, Fumiaki
Traeger, Lisa
Magliocca, Aurora
Ida, Tomoaki
Matsunaga, Tetsuro
Flicker, Daniel R.
Corman, Benjamin
Mori, Naohiro
Yamazaki, Yumiko
Batten, Annabelle
Li, Rebecca
Tanaka, Tomohiro
Ikeda, Takamitsu
Nakagawa, Akito
Atochin, Dmitriy N.
Ihara, Hideshi
Olenchock, Benjamin A.
Shen, Xinggui
Nishida, Motohiro
Hanaoka, Kenjiro
Kevil, Christopher G.
Xian, Ming
Bloch, Donald B.
Akaike, Takaaki
Hindle, Allyson G.
Motohashi, Hozumi
Ichinose, Fumito
author_sort Marutani, Eizo
collection PubMed
description The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain’s sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury.
format Online
Article
Text
id pubmed-8149856
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-81498562021-06-11 Sulfide catabolism ameliorates hypoxic brain injury Marutani, Eizo Morita, Masanobu Hirai, Shuichi Kai, Shinichi Grange, Robert M. H. Miyazaki, Yusuke Nagashima, Fumiaki Traeger, Lisa Magliocca, Aurora Ida, Tomoaki Matsunaga, Tetsuro Flicker, Daniel R. Corman, Benjamin Mori, Naohiro Yamazaki, Yumiko Batten, Annabelle Li, Rebecca Tanaka, Tomohiro Ikeda, Takamitsu Nakagawa, Akito Atochin, Dmitriy N. Ihara, Hideshi Olenchock, Benjamin A. Shen, Xinggui Nishida, Motohiro Hanaoka, Kenjiro Kevil, Christopher G. Xian, Ming Bloch, Donald B. Akaike, Takaaki Hindle, Allyson G. Motohashi, Hozumi Ichinose, Fumito Nat Commun Article The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain’s sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury. Nature Publishing Group UK 2021-05-25 /pmc/articles/PMC8149856/ /pubmed/34035265 http://dx.doi.org/10.1038/s41467-021-23363-x Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Marutani, Eizo
Morita, Masanobu
Hirai, Shuichi
Kai, Shinichi
Grange, Robert M. H.
Miyazaki, Yusuke
Nagashima, Fumiaki
Traeger, Lisa
Magliocca, Aurora
Ida, Tomoaki
Matsunaga, Tetsuro
Flicker, Daniel R.
Corman, Benjamin
Mori, Naohiro
Yamazaki, Yumiko
Batten, Annabelle
Li, Rebecca
Tanaka, Tomohiro
Ikeda, Takamitsu
Nakagawa, Akito
Atochin, Dmitriy N.
Ihara, Hideshi
Olenchock, Benjamin A.
Shen, Xinggui
Nishida, Motohiro
Hanaoka, Kenjiro
Kevil, Christopher G.
Xian, Ming
Bloch, Donald B.
Akaike, Takaaki
Hindle, Allyson G.
Motohashi, Hozumi
Ichinose, Fumito
Sulfide catabolism ameliorates hypoxic brain injury
title Sulfide catabolism ameliorates hypoxic brain injury
title_full Sulfide catabolism ameliorates hypoxic brain injury
title_fullStr Sulfide catabolism ameliorates hypoxic brain injury
title_full_unstemmed Sulfide catabolism ameliorates hypoxic brain injury
title_short Sulfide catabolism ameliorates hypoxic brain injury
title_sort sulfide catabolism ameliorates hypoxic brain injury
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149856/
https://www.ncbi.nlm.nih.gov/pubmed/34035265
http://dx.doi.org/10.1038/s41467-021-23363-x
work_keys_str_mv AT marutanieizo sulfidecatabolismameliorateshypoxicbraininjury
AT moritamasanobu sulfidecatabolismameliorateshypoxicbraininjury
AT hiraishuichi sulfidecatabolismameliorateshypoxicbraininjury
AT kaishinichi sulfidecatabolismameliorateshypoxicbraininjury
AT grangerobertmh sulfidecatabolismameliorateshypoxicbraininjury
AT miyazakiyusuke sulfidecatabolismameliorateshypoxicbraininjury
AT nagashimafumiaki sulfidecatabolismameliorateshypoxicbraininjury
AT traegerlisa sulfidecatabolismameliorateshypoxicbraininjury
AT maglioccaaurora sulfidecatabolismameliorateshypoxicbraininjury
AT idatomoaki sulfidecatabolismameliorateshypoxicbraininjury
AT matsunagatetsuro sulfidecatabolismameliorateshypoxicbraininjury
AT flickerdanielr sulfidecatabolismameliorateshypoxicbraininjury
AT cormanbenjamin sulfidecatabolismameliorateshypoxicbraininjury
AT morinaohiro sulfidecatabolismameliorateshypoxicbraininjury
AT yamazakiyumiko sulfidecatabolismameliorateshypoxicbraininjury
AT battenannabelle sulfidecatabolismameliorateshypoxicbraininjury
AT lirebecca sulfidecatabolismameliorateshypoxicbraininjury
AT tanakatomohiro sulfidecatabolismameliorateshypoxicbraininjury
AT ikedatakamitsu sulfidecatabolismameliorateshypoxicbraininjury
AT nakagawaakito sulfidecatabolismameliorateshypoxicbraininjury
AT atochindmitriyn sulfidecatabolismameliorateshypoxicbraininjury
AT iharahideshi sulfidecatabolismameliorateshypoxicbraininjury
AT olenchockbenjamina sulfidecatabolismameliorateshypoxicbraininjury
AT shenxinggui sulfidecatabolismameliorateshypoxicbraininjury
AT nishidamotohiro sulfidecatabolismameliorateshypoxicbraininjury
AT hanaokakenjiro sulfidecatabolismameliorateshypoxicbraininjury
AT kevilchristopherg sulfidecatabolismameliorateshypoxicbraininjury
AT xianming sulfidecatabolismameliorateshypoxicbraininjury
AT blochdonaldb sulfidecatabolismameliorateshypoxicbraininjury
AT akaiketakaaki sulfidecatabolismameliorateshypoxicbraininjury
AT hindleallysong sulfidecatabolismameliorateshypoxicbraininjury
AT motohashihozumi sulfidecatabolismameliorateshypoxicbraininjury
AT ichinosefumito sulfidecatabolismameliorateshypoxicbraininjury