Cargando…

Effects of Gestational Diabetes in Cognitive Behavior, Oxidative Stress and Metabolism on the Second-Generation Off-Spring of Rats

Gestational diabetes (GD) has a negative impact on neurodevelopment, resulting in cognitive and neurological deficiencies. Oxidative stress (OS) has been reported in the brain of the first-generation offspring of GD rats. OS has been strongly associated with neurodegenerative diseases. In this work,...

Descripción completa

Detalles Bibliográficos
Autores principales: Huerta-Cervantes, Maribel, Peña-Montes, Donovan J., López-Vázquez, Miguel Ángel, Montoya-Pérez, Rocío, Cortés-Rojo, Christian, Olvera-Cortés, María Esther, Saavedra-Molina, Alfredo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8150291/
https://www.ncbi.nlm.nih.gov/pubmed/34066827
http://dx.doi.org/10.3390/nu13051575
Descripción
Sumario:Gestational diabetes (GD) has a negative impact on neurodevelopment, resulting in cognitive and neurological deficiencies. Oxidative stress (OS) has been reported in the brain of the first-generation offspring of GD rats. OS has been strongly associated with neurodegenerative diseases. In this work, we determined the effect of GD on the cognitive behavior, oxidative stress and metabolism of second-generation offspring. GD was induced with streptozotocin (STZ) in pregnant rats to obtain first-generation offspring (F1), next female F1 rats were mated with control males to obtain second-generation offspring (F2). Two and six-month-old F2 males and females were employed. Anxious-type behavior, spatial learning and spatial working memory were evaluated. In cerebral cortex and hippocampus, the oxidative stress and serum biochemical parameters were measured. Male F2 GD offspring presented the highest level of anxiety-type behavior, whilst females had the lowest level of anxiety-type behavior at juvenile age. In short-term memory, adult females presented deficiencies. The offspring F2 GD females presented modifications in oxidative stress biomarkers in the cerebral cortex as lipid-peroxidation, oxidized glutathione and catalase activity. We also observed metabolic disturbances, particularly in the lipid and insulin levels of male and female F2 GD offspring. Our results suggest a transgenerational effect of GD on metabolism, anxiety-like behavior, and spatial working memory.