Cargando…

The Origin of the Non-Constancy of the Bulk Resistance of Ion-Selective Electrode Membranes within the Nernstian Response Range

The dependence of the bulk resistance of membranes of ionophore-based ion-selective electrodes (ISEs) on the composition of mixed electrolyte solutions, within the range of the Nernstian potentiometric response, is studied by chronopotentiometric and impedance measurements. In parallel to the resist...

Descripción completa

Detalles Bibliográficos
Autores principales: Keresten, Valentina, Solovyeva, Elena, Mikhelson, Konstantin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8150337/
https://www.ncbi.nlm.nih.gov/pubmed/34067145
http://dx.doi.org/10.3390/membranes11050344
Descripción
Sumario:The dependence of the bulk resistance of membranes of ionophore-based ion-selective electrodes (ISEs) on the composition of mixed electrolyte solutions, within the range of the Nernstian potentiometric response, is studied by chronopotentiometric and impedance measurements. In parallel to the resistance, water uptake by the membranes is also studied gravimetrically. The similarity of the respective curves is registered and explained in terms of heterogeneity of the membranes due to the presence of dispersed aqueous phase (water droplets). It is concluded that the electrochemical equilibrium is established between aqueous solution and the continuous organic phase, while the resistance refers to the membrane as whole, and water droplets hamper the charge transfer across the membranes. In this way, it is explained why the membrane bulk resistance is not constant within the range of the Nernstian potentiometric response of ISEs.