Cargando…
Development of a low-cost six-axis alignment instrument for flexible 2D and 3D ultrasonic probes
BACKGROUND: The pulse-echo test is used to evaluate the performance of ultrasonic probes before manufacturing ultrasonic systems. However, commercial alignment instruments are very large and use complex programs with long operation times. OBJECTIVE: To develop a low-cost alignment instrument used in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8150473/ https://www.ncbi.nlm.nih.gov/pubmed/33682747 http://dx.doi.org/10.3233/THC-218008 |
_version_ | 1783698160680435712 |
---|---|
author | Kim, Jungsuk Kim, Kwang Soo Choi, Hojong |
author_facet | Kim, Jungsuk Kim, Kwang Soo Choi, Hojong |
author_sort | Kim, Jungsuk |
collection | PubMed |
description | BACKGROUND: The pulse-echo test is used to evaluate the performance of ultrasonic probes before manufacturing ultrasonic systems. However, commercial alignment instruments are very large and use complex programs with long operation times. OBJECTIVE: To develop a low-cost alignment instrument used in the pulse-echo test for evaluating the performance of various 2D and 3D ultrasonic probes. METHODS: The developed alignment instrument can be aligned with the X, Y, Z, azimuth, elevation, and tilt axes with manual structure to support mounting fixtures that hold 2D and 3D ultrasonic probes. Each axis has a manual lever and is designed to have no movement when fixed. In particular, tilt and azimuth directions are designed to move more than 5 [Formula: see text] left and right. RESULTS: The probe mounted in the X, Y, and Z axes can move at above 50 mm. The probe mounted in the azimuth, elevation, and tilt axes can move more than 5 [Formula: see text] in the left and right directions. The pulse-echo test using commercial ultrasonic probes showed maximum error rate of less than 5%. CONCLUSIONS: Our developed alignment instrument can reduce costs by eliminating the need for shortening inspection times for probe manufacturers. |
format | Online Article Text |
id | pubmed-8150473 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | IOS Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-81504732021-06-09 Development of a low-cost six-axis alignment instrument for flexible 2D and 3D ultrasonic probes Kim, Jungsuk Kim, Kwang Soo Choi, Hojong Technol Health Care Research Article BACKGROUND: The pulse-echo test is used to evaluate the performance of ultrasonic probes before manufacturing ultrasonic systems. However, commercial alignment instruments are very large and use complex programs with long operation times. OBJECTIVE: To develop a low-cost alignment instrument used in the pulse-echo test for evaluating the performance of various 2D and 3D ultrasonic probes. METHODS: The developed alignment instrument can be aligned with the X, Y, Z, azimuth, elevation, and tilt axes with manual structure to support mounting fixtures that hold 2D and 3D ultrasonic probes. Each axis has a manual lever and is designed to have no movement when fixed. In particular, tilt and azimuth directions are designed to move more than 5 [Formula: see text] left and right. RESULTS: The probe mounted in the X, Y, and Z axes can move at above 50 mm. The probe mounted in the azimuth, elevation, and tilt axes can move more than 5 [Formula: see text] in the left and right directions. The pulse-echo test using commercial ultrasonic probes showed maximum error rate of less than 5%. CONCLUSIONS: Our developed alignment instrument can reduce costs by eliminating the need for shortening inspection times for probe manufacturers. IOS Press 2021-03-25 /pmc/articles/PMC8150473/ /pubmed/33682747 http://dx.doi.org/10.3233/THC-218008 Text en © 2021 – The authors. Published by IOS Press. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/) , which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Kim, Jungsuk Kim, Kwang Soo Choi, Hojong Development of a low-cost six-axis alignment instrument for flexible 2D and 3D ultrasonic probes |
title | Development of a low-cost six-axis alignment instrument for flexible 2D and 3D ultrasonic probes |
title_full | Development of a low-cost six-axis alignment instrument for flexible 2D and 3D ultrasonic probes |
title_fullStr | Development of a low-cost six-axis alignment instrument for flexible 2D and 3D ultrasonic probes |
title_full_unstemmed | Development of a low-cost six-axis alignment instrument for flexible 2D and 3D ultrasonic probes |
title_short | Development of a low-cost six-axis alignment instrument for flexible 2D and 3D ultrasonic probes |
title_sort | development of a low-cost six-axis alignment instrument for flexible 2d and 3d ultrasonic probes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8150473/ https://www.ncbi.nlm.nih.gov/pubmed/33682747 http://dx.doi.org/10.3233/THC-218008 |
work_keys_str_mv | AT kimjungsuk developmentofalowcostsixaxisalignmentinstrumentforflexible2dand3dultrasonicprobes AT kimkwangsoo developmentofalowcostsixaxisalignmentinstrumentforflexible2dand3dultrasonicprobes AT choihojong developmentofalowcostsixaxisalignmentinstrumentforflexible2dand3dultrasonicprobes |