Cargando…
Learning Macromanagement in Starcraft by Deep Reinforcement Learning
StarCraft is a real-time strategy game that provides a complex environment for AI research. Macromanagement, i.e., selecting appropriate units to build depending on the current state, is one of the most important problems in this game. To reduce the requirements for expert knowledge and enhance the...
Autores principales: | Huang, Wenzhen, Yin, Qiyue, Zhang, Junge, Huang, Kaiqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8150573/ https://www.ncbi.nlm.nih.gov/pubmed/34065012 http://dx.doi.org/10.3390/s21103332 |
Ejemplares similares
-
The Emerging Roles of mTORC1 in Macromanaging Autophagy
por: Dossou, Akpedje S., et al.
Publicado: (2019) -
SC2EGSet: StarCraft II Esport Replay and Game-state Dataset
por: Białecki, Andrzej, et al.
Publicado: (2023) -
3-Dimensional convolutional neural networks for predicting StarCraft Ⅱ results and extracting key game situations
por: Baek, Insung, et al.
Publicado: (2022) -
Learn to Steer through Deep Reinforcement Learning
por: Wu, Keyu, et al.
Publicado: (2018) -
Learning Mobile Manipulation through Deep Reinforcement Learning
por: Wang, Cong, et al.
Publicado: (2020)