Cargando…
Development and Validation of a Machine Learning Model Using Administrative Health Data to Predict Onset of Type 2 Diabetes
IMPORTANCE: Systems-level barriers to diabetes care could be improved with population health planning tools that accurately discriminate between high- and low-risk groups to guide investments and targeted interventions. OBJECTIVE: To develop and validate a population-level machine learning model for...
Autores principales: | Ravaut, Mathieu, Harish, Vinyas, Sadeghi, Hamed, Leung, Kin Kwan, Volkovs, Maksims, Kornas, Kathy, Watson, Tristan, Poutanen, Tomi, Rosella, Laura C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8150694/ https://www.ncbi.nlm.nih.gov/pubmed/34032855 http://dx.doi.org/10.1001/jamanetworkopen.2021.11315 |
Ejemplares similares
-
Predicting adverse outcomes due to diabetes complications with machine learning using administrative health data
por: Ravaut, Mathieu, et al.
Publicado: (2021) -
Developing Machine Learning Algorithms on Routinely Collected Administrative Health Data - Lessons from Ontario, Canada.
por: Harish, Vinyas, et al.
Publicado: (2022) -
Predicting hospitalisations related to ambulatory care sensitive conditions with machine learning for population health planning: derivation and validation cohort study
por: Yi, Seung Eun, et al.
Publicado: (2022) -
Risk stratification for COVID-19 hospitalization: a multivariable model based on gradient-boosting decision trees
por: Gutierrez, Jahir M., et al.
Publicado: (2021) -
Population-Based Estimates of Health Care Utilization and Expenditures by Adults During the Last 2 Years of Life in Canada’s Single-Payer Health System
por: Rosella, Laura C., et al.
Publicado: (2020)