Cargando…
Representation of the Universe as a Dendrogramic Hologram Endowed with Relational Interpretation
A proposal for a fundamental theory is described in which classical and quantum physics as a representation of the universe as a gigantic dendrogram are unified. The latter is the explicate order structure corresponding to the purely number-theoretical implicate order structure given by p-adic numbe...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8150734/ https://www.ncbi.nlm.nih.gov/pubmed/34066900 http://dx.doi.org/10.3390/e23050584 |
Sumario: | A proposal for a fundamental theory is described in which classical and quantum physics as a representation of the universe as a gigantic dendrogram are unified. The latter is the explicate order structure corresponding to the purely number-theoretical implicate order structure given by p-adic numbers. This number field was zero-dimensional, totally disconnected, and disordered. Physical systems (such as electrons, photons) are sub-dendrograms of the universal dendrogram. Measurement process is described as interactions among dendrograms; in particular, quantum measurement problems can be resolved using this process. The theory is realistic, but realism is expressed via the the Leibniz principle of the Identity of Indiscernibles. The classical-quantum interplay is based on the degree of indistinguishability between dendrograms (in which the ergodicity assumption is removed). Depending on this degree, some physical quantities behave more or less in a quantum manner (versus classic manner). Conceptually, our theory is very close to Smolin’s dynamics of difference and Rovelli’s relational quantum mechanics. The presence of classical behavior in nature implies a finiteness of the Universe-dendrogram. (Infinite Universe is considered to be purely quantum.) Reconstruction of events in a four-dimensional space type is based on the holographic principle. Our model reproduces Bell-type correlations in the dendrogramic framework. By adjusting dendrogram complexity, violation of the Bell inequality can be made larger or smaller. |
---|