Cargando…

An Smp43-Derived Short-Chain α-Helical Peptide Displays a Unique Sequence and Possesses Antimicrobial Activity against Both Gram-Positive and Gram-Negative Bacteria

Scorpion venoms are rich resources of antimicrobial peptides (AMPs). While the short-chain noncysteine-containing AMPs have attracted much attention as templates for drug development, the antimicrobial potential of long-chain noncysteine-containing AMPs has been largely overlooked. Here, by using th...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Xudong, Ding, Li, Ye, Xiangdong, Zhu, Wen, Zhang, Kaiyue, Li, Fangyan, Jiang, Huiwen, Zhao, Zhiwen, Chen, Zongyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8150835/
https://www.ncbi.nlm.nih.gov/pubmed/34064808
http://dx.doi.org/10.3390/toxins13050343
Descripción
Sumario:Scorpion venoms are rich resources of antimicrobial peptides (AMPs). While the short-chain noncysteine-containing AMPs have attracted much attention as templates for drug development, the antimicrobial potential of long-chain noncysteine-containing AMPs has been largely overlooked. Here, by using the online HeliQuest server, we designed and analyzed a series of 14-residue fragments of Smp43, a 43-residue long-chain noncysteine-containing AMP identified from the venom of Scorpio maurus palmatus. We found that Smp43(1-14) shows high antimicrobial activity against both Gram-positive and Gram-negative bacteria and is nontoxic to mammalian cells at the antimicrobial dosage. Sequence alignments showed that the designed Smp43(1-14) displays a unique primary structure that is different from other natural short-chain noncysteine-containing AMPs from scorpions, such as Uy17, Uy192 and IsCT. Moreover, the peptide Smp43(1-14) caused concentration-dependent fluorescence increases in the bacteria for all of the tested dyes, propidium iodide, SYTOX(TM) Green and DiSC(3)-5, suggesting that the peptide may kill the bacteria through the formation of pore structures in the plasma membrane. Taken together, our work sheds light on a new avenue for the design of novel short-chain noncysteine-containing AMPs and provides a good peptide template with a unique sequence for the development of novel drugs for use against bacterial infectious diseases.