Cargando…
Canine Angiostrongylus vasorum-Induced Early Innate Immune Reactions Based on NETs Formation and Canine Vascular Endothelial Cell Activation In Vitro
SIMPLE SUMMARY: Angiostrongylus vasorum is a cardiopulmonary nematode that affects canids, residing in the pulmonary artery and right atrium/ventricle. Due to its location, the parasite will have a close interaction with the different components of the innate immune system, including endothelial cel...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151090/ https://www.ncbi.nlm.nih.gov/pubmed/34065858 http://dx.doi.org/10.3390/biology10050427 |
Sumario: | SIMPLE SUMMARY: Angiostrongylus vasorum is a cardiopulmonary nematode that affects canids, residing in the pulmonary artery and right atrium/ventricle. Due to its location, the parasite will have a close interaction with the different components of the innate immune system, including endothelial cells and polymorphonuclear neutrophils (PMN). Here we evaluated the expression of adhesion molecules of canine aortic endothelial cells (CAEC), and NETs formation by co-culture of freshly isolated canine PMN with A. vasorum L3. Overall, we found distinct inter-donor variations in adhesion molecule expression among CAEC isolates. Additionally, PMN and A. vasorum co-culture induced NETs release without affecting larval viability. ABSTRACT: Due to its localization in the canine blood stream, Angiostrongylus vasorum is exposed to circulating polymorphonuclear neutrophils (PMN) and the endothelial cells of vessels. NETs release of canine PMN exposed to A. vasorum infective stages (third stage larvae, L3) and early pro-inflammatory immune reactions of primary canine aortic endothelial cells (CAEC) stimulated with A. vasorum L3-derived soluble antigens (AvAg) were analyzed. Expression profiles of the pro-inflammatory adhesion molecules ICAM-1, VCAM-1, P-selectin and E-selectin were analyzed in AvAg-stimulated CAEC. Immunofluorescence analyses demonstrated that motile A. vasorum L3 triggered different NETs phenotypes, with spread NETs (sprNETs) as the most abundant. Scanning electron microscopy confirmed that the co-culture of canine PMN with A. vasorum L3 resulted in significant larval entanglement. Distinct inter-donor variations of P-selectin, E-selectin, ICAM-1 and VCAM-1 gene transcription and protein expression were observed in CAEC isolates which might contribute to the high individual variability of pathological findings in severe canine angiostrongylosis. Even though canine NETs did not result in larval killing, the entanglement of L3 might facilitate further leukocyte attraction to their surface. Since NETs have already been documented as involved in both thrombosis and endothelium damage events, we speculate that A. vasorum-triggered NETs might play a critical role in disease outcome in vivo. |
---|