Cargando…
Hybrid Dilated Convolution with Multi-Scale Residual Fusion Network for Hyperspectral Image Classification
The convolutional neural network (CNN) has been proven to have better performance in hyperspectral image (HSI) classification than traditional methods. Traditional CNN on hyperspectral image classification is used to pay more attention to spectral features and ignore spatial information. In this pap...
Autores principales: | Li, Chenming, Qiu, Zelin, Cao, Xueying, Chen, Zhonghao, Gao, Hongmin, Hua, Zaijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151123/ https://www.ncbi.nlm.nih.gov/pubmed/34068823 http://dx.doi.org/10.3390/mi12050545 |
Ejemplares similares
-
A Hyperspectral Image Classification Method Based on Multi-Discriminator Generative Adversarial Networks
por: Gao, Hongmin, et al.
Publicado: (2019) -
A 3D-2D Multibranch Feature Fusion and Dense Attention Network for Hyperspectral Image Classification
por: Gao, Hongmin, et al.
Publicado: (2021) -
Hierarchical Multi-Scale Convolutional Neural Networks for Hyperspectral Image Classification
por: Li, Simin, et al.
Publicado: (2019) -
Hyperspectral Remote Sensing Image Classification Based on Maximum Overlap Pooling Convolutional Neural Network
por: Li, Chenming, et al.
Publicado: (2018) -
Deep Belief Network for Spectral–Spatial Classification of Hyperspectral Remote Sensor Data
por: Li, Chenming, et al.
Publicado: (2019)