Cargando…
Can Machine Learning and PS-InSAR Reliably Stand in for Road Profilometric Surveys?
This paper proposes a methodology for correlating products derived by Synthetic Aperture Radar (SAR) measurements and laser profilometric road roughness surveys. The procedure stems from two previous studies, in which several Machine Learning Algorithms (MLAs) have been calibrated for predicting the...
Autores principales: | Fiorentini, Nicholas, Maboudi, Mehdi, Leandri, Pietro, Losa, Massimo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151251/ https://www.ncbi.nlm.nih.gov/pubmed/34066242 http://dx.doi.org/10.3390/s21103377 |
Ejemplares similares
-
Monitoring and analysis of ground subsidence in Shanghai based on PS-InSAR and SBAS-InSAR technologies
por: Zhang, Zhihua, et al.
Publicado: (2023) -
Novel Methodology to Recover Road Surface Height Maps from Illuminated Scene through Convolutional Neural Networks
por: de León, Gonzalo, et al.
Publicado: (2022) -
A 3D Sensor Based on a Profilometrical Approach
por: Pedraza-Ortega, Jesús Carlos, et al.
Publicado: (2009) -
Land Subsidence in Qingdao, China, from 2017 to 2020 Based on PS-InSAR
por: Li, Mengwei, et al.
Publicado: (2022) -
Profilometric analysis of root surfaces after using various polishing agents
por: Jana, Anjan, et al.
Publicado: (2016)