Cargando…
Developing Relative Humidity and Temperature Corrections for Low-Cost Sensors Using Machine Learning
Existing government air quality monitoring networks consist of static measurement stations, which are highly reliable and accurately measure a wide range of air pollutants, but they are very large, expensive and require significant amounts of maintenance. As a promising solution, low-cost sensors ar...
Autores principales: | Vajs, Ivan, Drajic, Dejan, Gligoric, Nenad, Radovanovic, Ilija, Popovic, Ivan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151330/ https://www.ncbi.nlm.nih.gov/pubmed/34065017 http://dx.doi.org/10.3390/s21103338 |
Ejemplares similares
-
Building Low-Cost Sensing Infrastructure for Air Quality Monitoring in Urban Areas Based on Fog Computing
por: Popović, Ivan, et al.
Publicado: (2022) -
Data-Driven Machine Learning Calibration Propagation in A Hybrid Sensor Network for Air Quality Monitoring
por: Vajs, Ivan, et al.
Publicado: (2023) -
Low-Cost Nitric Oxide Sensors: Assessment of Temperature and Humidity Effects
por: Owen, Steven, et al.
Publicado: (2022) -
Humidity Measurement in Carbon Dioxide with Capacitive Humidity Sensors at Low Temperature and Pressure
por: Lorek, Andreas, et al.
Publicado: (2018) -
Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter
por: Di Antonio, Andrea, et al.
Publicado: (2018)