Cargando…
Classification of Surface Vehicle Propeller Cavitation Noise Using Spectrogram Processing in Combination with Convolution Neural Network
This paper proposes a method to enhance the quality of detecting and classifying surface vehicle propeller cavitation noise (VPCN) in shallow water by using the improved Detection Envelope Modulation On Noise (DEMON) algorithm in combination with the modified Convolution Neural Network (CNN). To imp...
Autores principales: | Bach, Nhat Hoang, Vu, Le Ha, Nguyen, Van Duc |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151462/ https://www.ncbi.nlm.nih.gov/pubmed/34065910 http://dx.doi.org/10.3390/s21103353 |
Ejemplares similares
-
Radar-Spectrogram-Based UAV Classification Using Convolutional Neural Networks
por: Park, Dongsuk, et al.
Publicado: (2020) -
A Denoising and Fourier Transformation-Based Spectrograms in ECG Classification Using Convolutional Neural Network
por: Safdar, Muhammad Farhan, et al.
Publicado: (2022) -
Cough Recognition Based on Mel-Spectrogram and Convolutional Neural Network
por: Zhou, Quan, et al.
Publicado: (2021) -
Comparison of the noise produced by the polymer and bronze P1566 propellers in the cavitation tunnel
por: Szymak, Piotr, et al.
Publicado: (2023) -
Classification of audio signals using spectrogram surfaces and extrinsic distortion measures
por: Levy, Jeremy, et al.
Publicado: (2022)