Cargando…
Histamine Ingestion by Anopheles stephensi Alters Important Vector Transmission Behaviors and Infection Success with Diverse Plasmodium Species
An estimated 229 million people worldwide were impacted by malaria in 2019. The vectors of malaria parasites (Plasmodium spp.) are Anopheles mosquitoes, making their behavior, infection success, and ultimately transmission of great importance. Individuals with severe malaria can exhibit significantl...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151525/ https://www.ncbi.nlm.nih.gov/pubmed/34064869 http://dx.doi.org/10.3390/biom11050719 |
_version_ | 1783698403475062784 |
---|---|
author | Rodriguez, Anna M. Hambly, Malayna G. Jandu, Sandeep Simão-Gurge, Raquel Lowder, Casey Lewis, Edwin E. Riffell, Jeffrey A. Luckhart, Shirley |
author_facet | Rodriguez, Anna M. Hambly, Malayna G. Jandu, Sandeep Simão-Gurge, Raquel Lowder, Casey Lewis, Edwin E. Riffell, Jeffrey A. Luckhart, Shirley |
author_sort | Rodriguez, Anna M. |
collection | PubMed |
description | An estimated 229 million people worldwide were impacted by malaria in 2019. The vectors of malaria parasites (Plasmodium spp.) are Anopheles mosquitoes, making their behavior, infection success, and ultimately transmission of great importance. Individuals with severe malaria can exhibit significantly increased blood concentrations of histamine, an allergic mediator in humans and an important insect neuromodulator, potentially delivered to mosquitoes during blood-feeding. To determine whether ingested histamine could alter Anopheles stephensi biology, we provisioned histamine at normal blood levels and at levels consistent with severe malaria and monitored blood-feeding behavior, flight activity, antennal and retinal responses to host stimuli and lifespan of adult female Anopheles stephensi. To determine the effects of ingested histamine on parasite infection success, we quantified midgut oocysts and salivary gland sporozoites in mosquitoes infected with Plasmodium yoelii and Plasmodium falciparum. Our data show that provisioning An. stephensi with histamine at levels consistent with severe malaria can enhance mosquito behaviors and parasite infection success in a manner that would be expected to amplify parasite transmission to and from human hosts. Such knowledge could be used to connect clinical interventions by reducing elevated histamine to mitigate human disease pathology with the delivery of novel lures for improved malaria control. |
format | Online Article Text |
id | pubmed-8151525 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81515252021-05-27 Histamine Ingestion by Anopheles stephensi Alters Important Vector Transmission Behaviors and Infection Success with Diverse Plasmodium Species Rodriguez, Anna M. Hambly, Malayna G. Jandu, Sandeep Simão-Gurge, Raquel Lowder, Casey Lewis, Edwin E. Riffell, Jeffrey A. Luckhart, Shirley Biomolecules Article An estimated 229 million people worldwide were impacted by malaria in 2019. The vectors of malaria parasites (Plasmodium spp.) are Anopheles mosquitoes, making their behavior, infection success, and ultimately transmission of great importance. Individuals with severe malaria can exhibit significantly increased blood concentrations of histamine, an allergic mediator in humans and an important insect neuromodulator, potentially delivered to mosquitoes during blood-feeding. To determine whether ingested histamine could alter Anopheles stephensi biology, we provisioned histamine at normal blood levels and at levels consistent with severe malaria and monitored blood-feeding behavior, flight activity, antennal and retinal responses to host stimuli and lifespan of adult female Anopheles stephensi. To determine the effects of ingested histamine on parasite infection success, we quantified midgut oocysts and salivary gland sporozoites in mosquitoes infected with Plasmodium yoelii and Plasmodium falciparum. Our data show that provisioning An. stephensi with histamine at levels consistent with severe malaria can enhance mosquito behaviors and parasite infection success in a manner that would be expected to amplify parasite transmission to and from human hosts. Such knowledge could be used to connect clinical interventions by reducing elevated histamine to mitigate human disease pathology with the delivery of novel lures for improved malaria control. MDPI 2021-05-11 /pmc/articles/PMC8151525/ /pubmed/34064869 http://dx.doi.org/10.3390/biom11050719 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rodriguez, Anna M. Hambly, Malayna G. Jandu, Sandeep Simão-Gurge, Raquel Lowder, Casey Lewis, Edwin E. Riffell, Jeffrey A. Luckhart, Shirley Histamine Ingestion by Anopheles stephensi Alters Important Vector Transmission Behaviors and Infection Success with Diverse Plasmodium Species |
title | Histamine Ingestion by Anopheles stephensi Alters Important Vector Transmission Behaviors and Infection Success with Diverse Plasmodium Species |
title_full | Histamine Ingestion by Anopheles stephensi Alters Important Vector Transmission Behaviors and Infection Success with Diverse Plasmodium Species |
title_fullStr | Histamine Ingestion by Anopheles stephensi Alters Important Vector Transmission Behaviors and Infection Success with Diverse Plasmodium Species |
title_full_unstemmed | Histamine Ingestion by Anopheles stephensi Alters Important Vector Transmission Behaviors and Infection Success with Diverse Plasmodium Species |
title_short | Histamine Ingestion by Anopheles stephensi Alters Important Vector Transmission Behaviors and Infection Success with Diverse Plasmodium Species |
title_sort | histamine ingestion by anopheles stephensi alters important vector transmission behaviors and infection success with diverse plasmodium species |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151525/ https://www.ncbi.nlm.nih.gov/pubmed/34064869 http://dx.doi.org/10.3390/biom11050719 |
work_keys_str_mv | AT rodriguezannam histamineingestionbyanophelesstephensialtersimportantvectortransmissionbehaviorsandinfectionsuccesswithdiverseplasmodiumspecies AT hamblymalaynag histamineingestionbyanophelesstephensialtersimportantvectortransmissionbehaviorsandinfectionsuccesswithdiverseplasmodiumspecies AT jandusandeep histamineingestionbyanophelesstephensialtersimportantvectortransmissionbehaviorsandinfectionsuccesswithdiverseplasmodiumspecies AT simaogurgeraquel histamineingestionbyanophelesstephensialtersimportantvectortransmissionbehaviorsandinfectionsuccesswithdiverseplasmodiumspecies AT lowdercasey histamineingestionbyanophelesstephensialtersimportantvectortransmissionbehaviorsandinfectionsuccesswithdiverseplasmodiumspecies AT lewisedwine histamineingestionbyanophelesstephensialtersimportantvectortransmissionbehaviorsandinfectionsuccesswithdiverseplasmodiumspecies AT riffelljeffreya histamineingestionbyanophelesstephensialtersimportantvectortransmissionbehaviorsandinfectionsuccesswithdiverseplasmodiumspecies AT luckhartshirley histamineingestionbyanophelesstephensialtersimportantvectortransmissionbehaviorsandinfectionsuccesswithdiverseplasmodiumspecies |