Cargando…
Multi-Scale Squeeze U-SegNet with Multi Global Attention for Brain MRI Segmentation
In this paper, we propose a multi-scale feature extraction with novel attention-based convolutional learning using the U-SegNet architecture to achieve segmentation of brain tissue from a magnetic resonance image (MRI). Although convolutional neural networks (CNNs) show enormous growth in medical im...
Autores principales: | Dayananda, Chaitra, Choi, Jae-Young, Lee, Bumshik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151599/ https://www.ncbi.nlm.nih.gov/pubmed/34066042 http://dx.doi.org/10.3390/s21103363 |
Ejemplares similares
-
SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022) -
Retinal Vessel Automatic Segmentation Using SegNet
por: Xu, Xiaomei, et al.
Publicado: (2022) -
Retracted: Retinal Vessel Automatic Segmentation Using SegNet
por: Methods in Medicine, Computational and Mathematical
Publicado: (2023) -
Liver Tumor Segmentation in CT Scans Using Modified SegNet
por: Almotairi, Sultan, et al.
Publicado: (2020) -
COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet
por: Saood, Adnan, et al.
Publicado: (2021)