Cargando…
Identification and Functional Annotation of Genes Related to Bone Stability in Laying Hens Using Random Forests
Skeletal disorders, including fractures and osteoporosis, in laying hens cause major welfare and economic problems. Although genetics have been shown to play a key role in bone integrity, little is yet known about the underlying genetic architecture of the traits. This study aimed to identify genes...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151682/ https://www.ncbi.nlm.nih.gov/pubmed/34066823 http://dx.doi.org/10.3390/genes12050702 |
_version_ | 1783698440708947968 |
---|---|
author | Jansen, Simon Baulain, Ulrich Habig, Christin Ramzan, Faisal Schauer, Jens Schmitt, Armin Otto Scholz, Armin Manfred Sharifi, Ahmad Reza Weigend, Annett Weigend, Steffen |
author_facet | Jansen, Simon Baulain, Ulrich Habig, Christin Ramzan, Faisal Schauer, Jens Schmitt, Armin Otto Scholz, Armin Manfred Sharifi, Ahmad Reza Weigend, Annett Weigend, Steffen |
author_sort | Jansen, Simon |
collection | PubMed |
description | Skeletal disorders, including fractures and osteoporosis, in laying hens cause major welfare and economic problems. Although genetics have been shown to play a key role in bone integrity, little is yet known about the underlying genetic architecture of the traits. This study aimed to identify genes associated with bone breaking strength and bone mineral density of the tibiotarsus and the humerus in laying hens. Potentially informative single nucleotide polymorphisms (SNP) were identified using Random Forests classification. We then searched for genes known to be related to bone stability in close proximity to the SNPs and identified 16 potential candidates. Some of them had human orthologues. Based on our findings, we can support the assumption that multiple genes determine bone strength, with each of them having a rather small effect, as illustrated by our SNP effect estimates. Furthermore, the enrichment analysis showed that some of these candidates are involved in metabolic pathways critical for bone integrity. In conclusion, the identified candidates represent genes that may play a role in the bone integrity of chickens. Although further studies are needed to determine causality, the genes reported here are promising in terms of alleviating bone disorders in laying hens. |
format | Online Article Text |
id | pubmed-8151682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81516822021-05-27 Identification and Functional Annotation of Genes Related to Bone Stability in Laying Hens Using Random Forests Jansen, Simon Baulain, Ulrich Habig, Christin Ramzan, Faisal Schauer, Jens Schmitt, Armin Otto Scholz, Armin Manfred Sharifi, Ahmad Reza Weigend, Annett Weigend, Steffen Genes (Basel) Article Skeletal disorders, including fractures and osteoporosis, in laying hens cause major welfare and economic problems. Although genetics have been shown to play a key role in bone integrity, little is yet known about the underlying genetic architecture of the traits. This study aimed to identify genes associated with bone breaking strength and bone mineral density of the tibiotarsus and the humerus in laying hens. Potentially informative single nucleotide polymorphisms (SNP) were identified using Random Forests classification. We then searched for genes known to be related to bone stability in close proximity to the SNPs and identified 16 potential candidates. Some of them had human orthologues. Based on our findings, we can support the assumption that multiple genes determine bone strength, with each of them having a rather small effect, as illustrated by our SNP effect estimates. Furthermore, the enrichment analysis showed that some of these candidates are involved in metabolic pathways critical for bone integrity. In conclusion, the identified candidates represent genes that may play a role in the bone integrity of chickens. Although further studies are needed to determine causality, the genes reported here are promising in terms of alleviating bone disorders in laying hens. MDPI 2021-05-08 /pmc/articles/PMC8151682/ /pubmed/34066823 http://dx.doi.org/10.3390/genes12050702 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jansen, Simon Baulain, Ulrich Habig, Christin Ramzan, Faisal Schauer, Jens Schmitt, Armin Otto Scholz, Armin Manfred Sharifi, Ahmad Reza Weigend, Annett Weigend, Steffen Identification and Functional Annotation of Genes Related to Bone Stability in Laying Hens Using Random Forests |
title | Identification and Functional Annotation of Genes Related to Bone Stability in Laying Hens Using Random Forests |
title_full | Identification and Functional Annotation of Genes Related to Bone Stability in Laying Hens Using Random Forests |
title_fullStr | Identification and Functional Annotation of Genes Related to Bone Stability in Laying Hens Using Random Forests |
title_full_unstemmed | Identification and Functional Annotation of Genes Related to Bone Stability in Laying Hens Using Random Forests |
title_short | Identification and Functional Annotation of Genes Related to Bone Stability in Laying Hens Using Random Forests |
title_sort | identification and functional annotation of genes related to bone stability in laying hens using random forests |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151682/ https://www.ncbi.nlm.nih.gov/pubmed/34066823 http://dx.doi.org/10.3390/genes12050702 |
work_keys_str_mv | AT jansensimon identificationandfunctionalannotationofgenesrelatedtobonestabilityinlayinghensusingrandomforests AT baulainulrich identificationandfunctionalannotationofgenesrelatedtobonestabilityinlayinghensusingrandomforests AT habigchristin identificationandfunctionalannotationofgenesrelatedtobonestabilityinlayinghensusingrandomforests AT ramzanfaisal identificationandfunctionalannotationofgenesrelatedtobonestabilityinlayinghensusingrandomforests AT schauerjens identificationandfunctionalannotationofgenesrelatedtobonestabilityinlayinghensusingrandomforests AT schmittarminotto identificationandfunctionalannotationofgenesrelatedtobonestabilityinlayinghensusingrandomforests AT scholzarminmanfred identificationandfunctionalannotationofgenesrelatedtobonestabilityinlayinghensusingrandomforests AT sharifiahmadreza identificationandfunctionalannotationofgenesrelatedtobonestabilityinlayinghensusingrandomforests AT weigendannett identificationandfunctionalannotationofgenesrelatedtobonestabilityinlayinghensusingrandomforests AT weigendsteffen identificationandfunctionalannotationofgenesrelatedtobonestabilityinlayinghensusingrandomforests |