Cargando…
Chest X-ray Bone Suppression for Improving Classification of Tuberculosis-Consistent Findings
Chest X-rays (CXRs) are the most commonly performed diagnostic examination to detect cardiopulmonary abnormalities. However, the presence of bony structures such as ribs and clavicles can obscure subtle abnormalities, resulting in diagnostic errors. This study aims to build a deep learning (DL)-base...
Autores principales: | Rajaraman, Sivaramakrishnan, Zamzmi, Ghada, Folio, Les, Alderson, Philip, Antani, Sameer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151767/ https://www.ncbi.nlm.nih.gov/pubmed/34067034 http://dx.doi.org/10.3390/diagnostics11050840 |
Ejemplares similares
-
Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Uncertainty Quantification in Segmenting Tuberculosis-Consistent Findings in Frontal Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Improved Semantic Segmentation of Tuberculosis—Consistent Findings in Chest X-rays Using Augmented Training of Modality-Specific U-Net Models with Weak Localizations
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2021) -
Semantically Redundant Training Data Removal and Deep Model Classification Performance: A Study with Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2023) -
Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2023)