Cargando…
Early Prediction of Breast Cancer Recurrence for Patients Treated with Neoadjuvant Chemotherapy: A Transfer Learning Approach on DCE-MRIs
SIMPLE SUMMARY: An early prediction of Breast Cancer Recurrence (BCR) for patients undergoing neoadjuvant chemotherapy (NACT) could better guide clinicians in the identification of the most suitable combination treatments for individual patient scenarios. We proposed a transfer learning approach to...
Autores principales: | Comes, Maria Colomba, La Forgia, Daniele, Didonna, Vittorio, Fanizzi, Annarita, Giotta, Francesco, Latorre, Agnese, Martinelli, Eugenio, Mencattini, Arianna, Paradiso, Angelo Virgilio, Tamborra, Pasquale, Terenzio, Antonella, Zito, Alfredo, Lorusso, Vito, Massafra, Raffaella |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151784/ https://www.ncbi.nlm.nih.gov/pubmed/34064923 http://dx.doi.org/10.3390/cancers13102298 |
Ejemplares similares
-
Early prediction of neoadjuvant chemotherapy response by exploiting a transfer learning approach on breast DCE-MRIs
por: Comes, Maria Colomba, et al.
Publicado: (2021) -
Robustness Evaluation of a Deep Learning Model on Sagittal and Axial Breast DCE-MRIs to Predict Pathological Complete Response to Neoadjuvant Chemotherapy
por: Massafra, Raffaella, et al.
Publicado: (2022) -
Response Predictivity to Neoadjuvant Therapies in Breast Cancer: A Qualitative Analysis of Background Parenchymal Enhancement in DCE-MRI
por: La Forgia, Daniele, et al.
Publicado: (2021) -
Predicting of Sentinel Lymph Node Status in Breast Cancer Patients with Clinically Negative Nodes: A Validation Study
por: Fanizzi, Annarita, et al.
Publicado: (2021) -
A machine learning ensemble approach for 5- and 10-year breast cancer invasive disease event classification
por: Massafra, Raffaella, et al.
Publicado: (2022)