Cargando…
Evaluation of the Effects of Solvents Used in the Fabrication of Microfluidic Devices on Cell Cultures
Microfluidic microphysiological systems (MPSs) or “organs-on-a-chip” are a promising alternative to animal models for drug screening and toxicology tests. However, most microfluidic devices employ polydimethylsiloxane (PDMS) as the structural material; and this has several drawbacks. Cyclo-olefin po...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151832/ https://www.ncbi.nlm.nih.gov/pubmed/34066183 http://dx.doi.org/10.3390/mi12050550 |
_version_ | 1783698476432883712 |
---|---|
author | Wen, Xiaopeng Takahashi, Seiichiro Hatakeyama, Kenji Kamei, Ken-ichiro |
author_facet | Wen, Xiaopeng Takahashi, Seiichiro Hatakeyama, Kenji Kamei, Ken-ichiro |
author_sort | Wen, Xiaopeng |
collection | PubMed |
description | Microfluidic microphysiological systems (MPSs) or “organs-on-a-chip” are a promising alternative to animal models for drug screening and toxicology tests. However, most microfluidic devices employ polydimethylsiloxane (PDMS) as the structural material; and this has several drawbacks. Cyclo-olefin polymers (COPs) are more advantageous than PDMS and other thermoplastic materials because of their low drug absorption and autofluorescence. However, most COP-based microfluidic devices are fabricated by solvent bonding of the constituent parts. Notably, the remnant solvent can affect the cultured cells. This study employed a photobonding process with vacuum ultraviolet (VUV) light to fabricate microfluidic devices without using any solvent and compared their performance with that of solvent-bonded systems (using cyclohexane, dichloromethane, or toluene as the solvent) to investigate the effects of residual solvent on cell cultures. Quantitative immunofluorescence assays indicated that the coating efficiencies of extracellular matrix proteins (e.g., Matrigel and collagen I) were lower in solvent-bonded COP devices than those in VUV-bonded devices. Furthermore, the cytotoxicity of the systems was evaluated using SH-SY5Y neuroblastoma cells, and increased apoptosis was observed in the solvent-processed devices. These results provide insights into the effects of solvents used during the fabrication of microfluidic devices and can help prevent undesirable reactions and establish good manufacturing practices. |
format | Online Article Text |
id | pubmed-8151832 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81518322021-05-27 Evaluation of the Effects of Solvents Used in the Fabrication of Microfluidic Devices on Cell Cultures Wen, Xiaopeng Takahashi, Seiichiro Hatakeyama, Kenji Kamei, Ken-ichiro Micromachines (Basel) Article Microfluidic microphysiological systems (MPSs) or “organs-on-a-chip” are a promising alternative to animal models for drug screening and toxicology tests. However, most microfluidic devices employ polydimethylsiloxane (PDMS) as the structural material; and this has several drawbacks. Cyclo-olefin polymers (COPs) are more advantageous than PDMS and other thermoplastic materials because of their low drug absorption and autofluorescence. However, most COP-based microfluidic devices are fabricated by solvent bonding of the constituent parts. Notably, the remnant solvent can affect the cultured cells. This study employed a photobonding process with vacuum ultraviolet (VUV) light to fabricate microfluidic devices without using any solvent and compared their performance with that of solvent-bonded systems (using cyclohexane, dichloromethane, or toluene as the solvent) to investigate the effects of residual solvent on cell cultures. Quantitative immunofluorescence assays indicated that the coating efficiencies of extracellular matrix proteins (e.g., Matrigel and collagen I) were lower in solvent-bonded COP devices than those in VUV-bonded devices. Furthermore, the cytotoxicity of the systems was evaluated using SH-SY5Y neuroblastoma cells, and increased apoptosis was observed in the solvent-processed devices. These results provide insights into the effects of solvents used during the fabrication of microfluidic devices and can help prevent undesirable reactions and establish good manufacturing practices. MDPI 2021-05-12 /pmc/articles/PMC8151832/ /pubmed/34066183 http://dx.doi.org/10.3390/mi12050550 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wen, Xiaopeng Takahashi, Seiichiro Hatakeyama, Kenji Kamei, Ken-ichiro Evaluation of the Effects of Solvents Used in the Fabrication of Microfluidic Devices on Cell Cultures |
title | Evaluation of the Effects of Solvents Used in the Fabrication of Microfluidic Devices on Cell Cultures |
title_full | Evaluation of the Effects of Solvents Used in the Fabrication of Microfluidic Devices on Cell Cultures |
title_fullStr | Evaluation of the Effects of Solvents Used in the Fabrication of Microfluidic Devices on Cell Cultures |
title_full_unstemmed | Evaluation of the Effects of Solvents Used in the Fabrication of Microfluidic Devices on Cell Cultures |
title_short | Evaluation of the Effects of Solvents Used in the Fabrication of Microfluidic Devices on Cell Cultures |
title_sort | evaluation of the effects of solvents used in the fabrication of microfluidic devices on cell cultures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151832/ https://www.ncbi.nlm.nih.gov/pubmed/34066183 http://dx.doi.org/10.3390/mi12050550 |
work_keys_str_mv | AT wenxiaopeng evaluationoftheeffectsofsolventsusedinthefabricationofmicrofluidicdevicesoncellcultures AT takahashiseiichiro evaluationoftheeffectsofsolventsusedinthefabricationofmicrofluidicdevicesoncellcultures AT hatakeyamakenji evaluationoftheeffectsofsolventsusedinthefabricationofmicrofluidicdevicesoncellcultures AT kameikenichiro evaluationoftheeffectsofsolventsusedinthefabricationofmicrofluidicdevicesoncellcultures |