Cargando…

Amplifications of Stemness Gene Loci—New Markers for the Determination of the Need for Neoadjuvant Chemotherapy for Patients with Breast Cancer. A Prospective Study

In this prospective study, a new strategy for the prescription of neoadjuvant chemotherapy (NAC) was prospectively tested and depended on the presence of stemness gene amplifications in the tumor before treatment, which in our early studies showed a connection with metastasis. The study included 92...

Descripción completa

Detalles Bibliográficos
Autores principales: Litviakov, Nikolai V., Ibragimova, Marina K., Tsyganov, Matvey M., Kazantseva, Polina V., Doroshenko, Artem V., Garbukov, Eugeniy Yu., Frolova, Irina G., Slonimskaya, Elena M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151881/
https://www.ncbi.nlm.nih.gov/pubmed/34064798
http://dx.doi.org/10.3390/jpm11050397
Descripción
Sumario:In this prospective study, a new strategy for the prescription of neoadjuvant chemotherapy (NAC) was prospectively tested and depended on the presence of stemness gene amplifications in the tumor before treatment, which in our early studies showed a connection with metastasis. The study included 92 patients with grade IIA–IIIB luminal B breast cancer. Patients underwent a biopsy before treatment, and with the use of a CytoScan HD Array microarray (Affymetrix, Santa Clara, CA, USA), the presence of stemness gene amplifications (3q, 5p, 6p, 7q, 8q, 13q, 9p, 9q, 10p, 10q21.1, 16p, 18chr, 19p) in the tumor was determined. In group 1 (n = 41), in the presence of two or more amplifications, patients were prescribed a personalized NAC regimen. In group 2 (n = 21), if there was no amplification of stemness genes in the tumor, then patients were not prescribed NAC, and treatment began with surgery. Group 3 (n = 30) served as a historical control. The frequency of an objective response to NAC in groups 1 and 3 was 79%. Nonmetastatic survival was found in 100% of patients in group 2, who did not undergo NAC. In patients in group 1, the frequency of metastasis was 10% (4/41). At the same time, in patients in group 3, who received NAC, the rate of metastasis was 47% (14/30). The differences between group 1 and group 3 and between group 2 and group 3 were statistically significant, both by Fisher’s criterion and a log-rank test. The appointment of NAC was most feasible in patients with clones with stemness gene amplifications in the primary tumor, while in the absence of amplifications, preoperative chemotherapy led to a sharp decrease in metastasis-free survival. This strategy of NAC prescription allowed us to achieve 93% metastatic survival in patients with breast cancer.