Cargando…
Training Data Selection and Optimal Sensor Placement for Deep-Learning-Based Sparse Inertial Sensor Human Posture Reconstruction
Although commercial motion-capture systems have been widely used in various applications, the complex setup limits their application scenarios for ordinary consumers. To overcome the drawbacks of wearability, human posture reconstruction based on a few wearable sensors have been actively studied in...
Autores principales: | Zheng, Zhaolong, Ma, Hao, Yan, Weichao, Liu, Haoyang, Yang, Zaiyue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151896/ https://www.ncbi.nlm.nih.gov/pubmed/34068635 http://dx.doi.org/10.3390/e23050588 |
Ejemplares similares
-
Automatic Classification of Squat Posture Using Inertial Sensors: Deep Learning Approach
por: Lee, Jaehyun, et al.
Publicado: (2020) -
Measuring postural stability with an inertial sensor: validity and sensitivity
por: Neville, Christopher, et al.
Publicado: (2015) -
Faster Deep Inertial Pose Estimation with Six Inertial Sensors
por: Xia, Di, et al.
Publicado: (2022) -
Homogeneous Sensor Fusion Optimization for Low-Cost Inertial Sensors
por: Nemec, Dusan, et al.
Publicado: (2023) -
Automatic identification of inertial sensor placement on human body segments during walking
por: Weenk, Dirk, et al.
Publicado: (2013)