Cargando…
A Novel Domain Adaptation-Based Intelligent Fault Diagnosis Model to Handle Sample Class Imbalanced Problem
As the key component to transmit power and torque, the fault diagnosis of rotating machinery is crucial to guarantee the reliable operation of mechanical equipment. Regrettably, sample class imbalance is a common phenomenon in industrial applications, which causes large cross-domain distribution dis...
Autores principales: | Zhang, Zhongwei, Shao, Mingyu, Wang, Liping, Shao, Sujuan, Ma, Chicheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152017/ https://www.ncbi.nlm.nih.gov/pubmed/34066271 http://dx.doi.org/10.3390/s21103382 |
Ejemplares similares
-
Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data
por: Chao, Ko-Chieh, et al.
Publicado: (2022) -
A Novel Study on a Generalized Model Based on Self-Supervised Learning and Sparse Filtering for Intelligent Bearing Fault Diagnosis
por: Nie, Guocai, et al.
Publicado: (2023) -
Intelligent Fault Diagnosis of Industrial Robot Based on Multiclass Mahalanobis-Taguchi System for Imbalanced Data
por: Sun, Yue, et al.
Publicado: (2022) -
Generative Adversarial Network-Based Fault Detection in Semiconductor Equipment with Class-Imbalanced Data
por: Choi, Jeong Eun, et al.
Publicado: (2023) -
Ensemble Capsule Network with an Attention Mechanism for the Fault Diagnosis of Bearings from Imbalanced Data Samples
por: Xu, Zengbing, et al.
Publicado: (2022)