Cargando…
Real-Time Small Drones Detection Based on Pruned YOLOv4
To address the threat of drones intruding into high-security areas, the real-time detection of drones is urgently required to protect these areas. There are two main difficulties in real-time detection of drones. One of them is that the drones move quickly, which leads to requiring faster detectors....
Autores principales: | Liu, Hansen, Fan, Kuangang, Ouyang, Qinghua, Li, Na |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152023/ https://www.ncbi.nlm.nih.gov/pubmed/34066267 http://dx.doi.org/10.3390/s21103374 |
Ejemplares similares
-
Real-Time Detection of Drones Using Channel and Layer Pruning, Based on the YOLOv3-SPP3 Deep Learning Algorithm
por: Zhang, Xuetao, et al.
Publicado: (2022) -
High-Resolution Drone Detection Based on Background Difference and SAG-YOLOv5s
por: Lv, Yaowen, et al.
Publicado: (2022) -
Using Pruning-Based YOLOv3 Deep Learning Algorithm for Accurate Detection of Sheep Face
por: Song, Shuang, et al.
Publicado: (2022) -
YOLOv5 Drone Detection Using Multimodal Data Registered by the Vicon System
por: Lindenheim-Locher, Wojciech, et al.
Publicado: (2023) -
YOLOv5 with ConvMixer Prediction Heads for Precise Object Detection in Drone Imagery
por: Baidya, Ranjai, et al.
Publicado: (2022)