Cargando…

Influences of temperature and moisture on abiotic and biotic soil CO(2) emission from a subtropical forest

BACKGROUND: Soil CO(2) efflux is considered to mainly derive from biotic activities, while potential contribution of abiotic processes has been mostly neglected especially in productive ecosystems with highly active soil biota. We collected a subtropical forest soil to sterilize for incubation under...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xiaomei, Liu, Muying, Xu, Zhanying, Wei, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152076/
https://www.ncbi.nlm.nih.gov/pubmed/34032935
http://dx.doi.org/10.1186/s13021-021-00181-8
Descripción
Sumario:BACKGROUND: Soil CO(2) efflux is considered to mainly derive from biotic activities, while potential contribution of abiotic processes has been mostly neglected especially in productive ecosystems with highly active soil biota. We collected a subtropical forest soil to sterilize for incubation under different temperature (20 and 30 °C) and moisture regimes (30%, 60 and 90% of water holding capacity), aiming to quantify contribution of abiotic and biotic soil CO(2) emission under changing environment scenarios. MAIN FINDINGS: Results showed that abiotic processes accounted for a considerable proportion (15.6−60.0%) of CO(2) emission in such a biologically active soil under different temperature and moisture conditions, and the abiotic soil CO(2) emission was very likely to derive from degradation of soil organic carbon via thermal degradation and oxidation of reactive oxygen species. Furthermore, compared with biotically driving decomposition processes, abiotic soil CO(2) emission was less sensitive to changes in temperature and moisture, causing reductions in proportion of the abiotic to total soil CO(2) emission as temperature and moisture increased. CONCLUSIONS: These observations highlight that abiotic soil CO(2) emission is unneglectable even in productive ecosystems with high biological activities, and different responses of the abiotic and biotic processes to environmental changes could increase the uncertainty in predicting carbon cycling.