Cargando…
A Comparison among Different Ways to Investigate Composite Materials with Lock-In Thermography: The Multi-Frequency Approach
The main goal of non-destructive testing is the detection of defects early enough to avoid catastrophic failure with particular interest for the inspection of aerospace structures; under this aspect, all methods for fast and reliable inspection deserve special attention. In this sense, active thermo...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152101/ https://www.ncbi.nlm.nih.gov/pubmed/34066293 http://dx.doi.org/10.3390/ma14102525 |
Sumario: | The main goal of non-destructive testing is the detection of defects early enough to avoid catastrophic failure with particular interest for the inspection of aerospace structures; under this aspect, all methods for fast and reliable inspection deserve special attention. In this sense, active thermography for non-destructive testing enables contactless, fast, remote, and not expensive control of materials and structures. Furthermore, different works have confirmed the potentials of lock-in thermography as a flexible technique for its peculiarity to be performed by means of a low-cost set-up. In this work, a new approach called the multi-frequency via software approach (MFS), based on the superimposition via software of two square waves with two different main excitation frequencies, has been used to inspect a sample in carbon fiber reinforced polymers (CFRP) material with imposed defects of different materials, sizes and depths, by means of lock-in thermography. The advantages and disadvantages of the multi-frequency approach have been highlighted by comparing quantitatively the MFS with the traditional excitation methods (sine and square waves). |
---|