Cargando…
Machine learning to predict final fire size at the time of ignition
Fires in boreal forests of Alaska are changing, threatening human health and ecosystems. Given expected increases in fire activity with climate warming, insight into the controls on fire size from the time of ignition is necessary. Such insight may be increasingly useful for fire management, especia...
Autores principales: | Coffield, Shane R., Graff, Casey A., Chen, Yang, Smyth, Padhraic, Foufoula-Georgiou, Efi, Randerson, James T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152111/ https://www.ncbi.nlm.nih.gov/pubmed/34045840 http://dx.doi.org/10.1071/wf19023 |
Ejemplares similares
-
Forecasting Global Fire Emissions on Subseasonal to Seasonal (S2S) Time Scales
por: Chen, Yang, et al.
Publicado: (2020) -
California wildfire spread derived using VIIRS satellite observations and an object-based tracking system
por: Chen, Yang, et al.
Publicado: (2022) -
Climate-driven changes in the predictability of seasonal precipitation
por: Le, Phong V. V., et al.
Publicado: (2023) -
Author Correction: Climate-driven changes in the predictability of seasonal precipitation
por: Le, Phong V. V., et al.
Publicado: (2023) -
Hotspots of Predictability: Identifying Regions of High Precipitation Predictability at Seasonal Timescales From Limited Time Series Observations
por: Mamalakis, Antonios, et al.
Publicado: (2022)