Cargando…

Hydrogel spacer shrinkage during external-beam radiation therapy following low-dose-rate brachytherapy for high-risk prostate cancer: a case series 

BACKGROUND: Few studies have assessed hydrogel spacer shrinkage during external-beam radiation therapy following brachytherapy for localized high-risk prostate cancer. This case presentation evaluated the changes in hydrogel spacer appearance by magnetic resonance imaging during external-beam radiat...

Descripción completa

Detalles Bibliográficos
Autores principales: Kubo, Katsumaro, Kenjo, Masahiro, Kawabata, Hideo, Wadasaki, Koichi, Kajiwara, Mitsuru, Doi, Yoshiko, Nakao, Minoru, Miura, Hideharu, Ozawa, Shuichi, Nagata, Yasushi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152132/
https://www.ncbi.nlm.nih.gov/pubmed/34034804
http://dx.doi.org/10.1186/s13256-021-02864-9
Descripción
Sumario:BACKGROUND: Few studies have assessed hydrogel spacer shrinkage during external-beam radiation therapy following brachytherapy for localized high-risk prostate cancer. This case presentation evaluated the changes in hydrogel spacer appearance by magnetic resonance imaging during external-beam radiation therapy after brachytherapy for prostate cancer and analyzed the effect of this shrinkage on the dose distribution in four cases. CASE PRESENTATION: In all cases, we implanted (125)I sources using a modified peripheral loading pattern for seed placement. The prescribed dose for each implant was 110 Gy. After delivering the sources, a hydrogel spacer was injected. All cases underwent external-beam radiation therapy approximately 1–2 months after brachytherapy. The prescribed dose of external-beam radiation therapy was 45 Gy in 1.8-Gy fractions. Magnetic resonance imaging was performed for evaluation on the day following seed implantation (baseline), at external-beam radiation therapy planning, and during external-beam radiation therapy. The median hydrogel spacer volume was 16.2 (range 10.9–17.7) cc at baseline, 14.4 (range, 9.4–16.1) cc at external-beam radiation therapy planning, and 7.1 (range, 2.0–11.4) cc during external-beam radiation therapy. The hydrogel spacer volume during external-beam radiation therapy was significantly lower than that at external-beam radiation therapy planning. The rectum V60–80 (rectal volume receiving at least 60–80% of the prescribed dose of external-beam radiation therapy) during external-beam radiation therapy was significantly higher than that at external-beam radiation therapy planning. CONCLUSIONS: The potential reduction in hydrogel spacer size during external-beam radiation therapy following brachytherapy can lead to unexpected irradiation to the rectum. This case presentation would be helpful for similar cases.