Cargando…

Morphological and Chemical Analysis of Low-Density Polyethylene Crystallized on Carbon and Clay Nanofillers

Interest in carbon and clay-based nanofillers has grown in recent years. The crystallization behavior of low-density polyethylene (LDPE) was studied using a variety of notable nanofillers used in engineering applications and prepared using a solution crystallization method. Carbon nanotubes (CNTs),...

Descripción completa

Detalles Bibliográficos
Autores principales: Depan, Dilip, Chirdon, William, Khattab, Ahmed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152291/
https://www.ncbi.nlm.nih.gov/pubmed/34067958
http://dx.doi.org/10.3390/polym13101558
Descripción
Sumario:Interest in carbon and clay-based nanofillers has grown in recent years. The crystallization behavior of low-density polyethylene (LDPE) was studied using a variety of notable nanofillers used in engineering applications and prepared using a solution crystallization method. Carbon nanotubes (CNTs), graphene oxide nano-platelets, clay (montmorillonite), and modified clay (surface-modified with trimethyl stearyl ammonium) were used to induce heterogeneous crystallization of LDPE. The crystallized LDPE samples, imaged using scanning and transmission electron microscopy, revealed different microstructures for each nanohybrid system, indicating these various nanofillers induce LDPE lamellae ordering. The underlying interactions between polymer and nanofiller were investigated using FTIR spectroscopy. X-ray diffraction (XRD) was used to determine crystallinity. This work examines how the differences in morphology and chemical structure of the nanofillers induce changes in the nucleation and growth of polymer crystals. These results will provide guidance on functional design of nano-devices with controlled properties.