Cargando…
Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data
BACKGROUND: Predicting the drug response of a patient is important for precision oncology. In recent studies, multi-omics data have been used to improve the prediction accuracy of drug response. Although multi-omics data are good resources for drug response prediction, the large dimension of data te...
Autores principales: | Park, Sejin, Soh, Jihee, Lee, Hyunju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152321/ https://www.ncbi.nlm.nih.gov/pubmed/34034645 http://dx.doi.org/10.1186/s12859-021-04146-z |
Ejemplares similares
-
HIDTI: integration of heterogeneous information to predict drug-target interactions
por: Soh, Jihee, et al.
Publicado: (2022) -
SuperTriplets: a triplet-based supertree approach to phylogenomics
por: Ranwez, Vincent, et al.
Publicado: (2010) -
Triplet Deep Hashing with Joint Supervised Loss Based on Deep Neural Networks
por: Li, Mingyong, et al.
Publicado: (2019) -
Comparison of five supervised feature selection algorithms leading to top features and gene signatures from multi-omics data in cancer
por: Bhadra, Tapas, et al.
Publicado: (2022) -
Felt Splints
por: Hamilton, Frank H.
Publicado: (1853)