Cargando…
Representational Content of Oscillatory Brain Activity during Object Recognition: Contrasting Cortical and Deep Neural Network Hierarchies
Numerous theories propose a key role for brain oscillations in visual perception. Most of these theories postulate that sensory information is encoded in specific oscillatory components (e.g., power or phase) of specific frequency bands. These theories are often tested with whole-brain recording met...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152371/ https://www.ncbi.nlm.nih.gov/pubmed/33903182 http://dx.doi.org/10.1523/ENEURO.0362-20.2021 |
_version_ | 1783698590958354432 |
---|---|
author | Reddy, Leila Cichy, Radoslaw Martin VanRullen, Rufin |
author_facet | Reddy, Leila Cichy, Radoslaw Martin VanRullen, Rufin |
author_sort | Reddy, Leila |
collection | PubMed |
description | Numerous theories propose a key role for brain oscillations in visual perception. Most of these theories postulate that sensory information is encoded in specific oscillatory components (e.g., power or phase) of specific frequency bands. These theories are often tested with whole-brain recording methods of low spatial resolution (EEG or MEG), or depth recordings that provide a local, incomplete view of the brain. Opportunities to bridge the gap between local neural populations and whole-brain signals are rare. Here, using representational similarity analysis (RSA) in human participants we explore which MEG oscillatory components (power and phase, across various frequency bands) correspond to low or high-level visual object representations, using brain representations from fMRI, or layer-wise representations in seven recent deep neural networks (DNNs), as a template for low/high-level object representations. The results showed that around stimulus onset and offset, most transient oscillatory signals correlated with low-level brain patterns (V1). During stimulus presentation, sustained β (∼20 Hz) and γ (>60 Hz) power best correlated with V1, while oscillatory phase components correlated with IT representations. Surprisingly, this pattern of results did not always correspond to low-level or high-level DNN layer activity. In particular, sustained β band oscillatory power reflected high-level DNN layers, suggestive of a feed-back component. These results begin to bridge the gap between whole-brain oscillatory signals and object representations supported by local neuronal activations. |
format | Online Article Text |
id | pubmed-8152371 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Society for Neuroscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-81523712021-05-26 Representational Content of Oscillatory Brain Activity during Object Recognition: Contrasting Cortical and Deep Neural Network Hierarchies Reddy, Leila Cichy, Radoslaw Martin VanRullen, Rufin eNeuro Research Article: New Research Numerous theories propose a key role for brain oscillations in visual perception. Most of these theories postulate that sensory information is encoded in specific oscillatory components (e.g., power or phase) of specific frequency bands. These theories are often tested with whole-brain recording methods of low spatial resolution (EEG or MEG), or depth recordings that provide a local, incomplete view of the brain. Opportunities to bridge the gap between local neural populations and whole-brain signals are rare. Here, using representational similarity analysis (RSA) in human participants we explore which MEG oscillatory components (power and phase, across various frequency bands) correspond to low or high-level visual object representations, using brain representations from fMRI, or layer-wise representations in seven recent deep neural networks (DNNs), as a template for low/high-level object representations. The results showed that around stimulus onset and offset, most transient oscillatory signals correlated with low-level brain patterns (V1). During stimulus presentation, sustained β (∼20 Hz) and γ (>60 Hz) power best correlated with V1, while oscillatory phase components correlated with IT representations. Surprisingly, this pattern of results did not always correspond to low-level or high-level DNN layer activity. In particular, sustained β band oscillatory power reflected high-level DNN layers, suggestive of a feed-back component. These results begin to bridge the gap between whole-brain oscillatory signals and object representations supported by local neuronal activations. Society for Neuroscience 2021-05-24 /pmc/articles/PMC8152371/ /pubmed/33903182 http://dx.doi.org/10.1523/ENEURO.0362-20.2021 Text en Copyright © 2021 Reddy et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Research Article: New Research Reddy, Leila Cichy, Radoslaw Martin VanRullen, Rufin Representational Content of Oscillatory Brain Activity during Object Recognition: Contrasting Cortical and Deep Neural Network Hierarchies |
title | Representational Content of Oscillatory Brain Activity during Object Recognition: Contrasting Cortical and Deep Neural Network Hierarchies |
title_full | Representational Content of Oscillatory Brain Activity during Object Recognition: Contrasting Cortical and Deep Neural Network Hierarchies |
title_fullStr | Representational Content of Oscillatory Brain Activity during Object Recognition: Contrasting Cortical and Deep Neural Network Hierarchies |
title_full_unstemmed | Representational Content of Oscillatory Brain Activity during Object Recognition: Contrasting Cortical and Deep Neural Network Hierarchies |
title_short | Representational Content of Oscillatory Brain Activity during Object Recognition: Contrasting Cortical and Deep Neural Network Hierarchies |
title_sort | representational content of oscillatory brain activity during object recognition: contrasting cortical and deep neural network hierarchies |
topic | Research Article: New Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152371/ https://www.ncbi.nlm.nih.gov/pubmed/33903182 http://dx.doi.org/10.1523/ENEURO.0362-20.2021 |
work_keys_str_mv | AT reddyleila representationalcontentofoscillatorybrainactivityduringobjectrecognitioncontrastingcorticalanddeepneuralnetworkhierarchies AT cichyradoslawmartin representationalcontentofoscillatorybrainactivityduringobjectrecognitioncontrastingcorticalanddeepneuralnetworkhierarchies AT vanrullenrufin representationalcontentofoscillatorybrainactivityduringobjectrecognitioncontrastingcorticalanddeepneuralnetworkhierarchies |